

NALLA NARASIMHA REDDY

Education Society's Group of Institutions - Integrated Campus
Near Narapally, Chowdariguda (Village), Korremula 'X' Road, Ghatkesar (Mandal), Medchal District, Hyderabad - 500 088, Telangana.

B.Tech. in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE) COURSE STRUCTURE, III & IV YEAR SYLLABUS (R22 Regulations)

Applicable from AY 2022-23 Batch

I Year I Semester

S.No.	Course Code	Course	L	T	P	Credits
1	22MA101BS	Matrices and Calculus	3	1	0	4
2.				1	Ŭ	
2.	22CH102BS	Engineering Chemistry	3	1	0	4
3.	22CS103ES	Programming for Problem Solving	3	0	0	3
4.	22EE104ES	Basic Electrical Engineering	2	0	0	2
5.	22ME105ES	Computer Aided Engineering Graphics	1	0	4	3
6.	22CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7.	22CH106BS	Engineering Chemistry Laboratory	0	0	2	1
8.	22CS108ES	Programming for Problem Solving Laboratory	0	0	2	1
9.	22EE109ES	Basic Electrical Engineering Laboratory	0	0	2	1
		Total	12	2	12	20

I Year II Semester

S.No.	Course	Course		Т	P	Credits
5.110.	Code	Course	L	1	1	Credits
1.	22MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	22AP202BS	Applied Physics	3	1	0	4
3.	22ME203ES	Engineering Workshop	0	1	3	2.5
4.	22EN204HS	English for Skill Enhancement	2	0	0	2
5.	22EC205PC	Electronic Devices and Circuits	2	0	0	2
6.	22AP205BS	Applied Physics Laboratory	0	0	3	1.5
7.	22CS207ES	Python Programming Laboratory	0	1	2	2
8.	22EN207HS	English Language and Communication Skills Laboratory	0	0	2	1
9.	22CS209PC	IT Workshop	0	0	2	1
		Total	10	4	12	20

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	P	Credits
1	22EC303PC	Digital Logic Design	3	0	0	3
2	22CS302PC	Data Structures	3	0	0	3
3	22MA303BS	Computer Oriented Statistical Methods	3	1	0	4
4	22CS304PC	Computer Organization and Architecture	3	0	0	3
5	22CS305PC	Object Oriented Programming through Java	3	0	0	3
6	22CS306PC	Data Structures Lab	0	0	3	1.5
7	22CS307PC	Object Oriented Programming through Java Lab	0	0	3	1.5
8	22MC309GS	Gender Sensitization Lab	0	0	2	0
9	22CS309PC	Skill Development Course	0	0	2	1
		Total	15	1	10	20

II YEAR II SEMESTER

	Course					
S. No.	Code	Course Title	L	T	P	Credits
1	22CS401PC	Discrete Mathematics	3	0	0	3
2	22SM402MS	Business Economics & Financial Analysis	3	0	0	3
3	22CS403PC	Operating Systems	3	0	0	3
4	22CS404PC	Database Management Systems	3	0	0	3
5	22CS405PC	Software Engineering	3	0	0	3
6	22CS406PC	Operating Systems Lab	0	0	2	1
7	22CS407PC	Database Management Systems Lab	0	0	2	1
8	22CS408PC	Real-time Research Project/ Societal Related Project	0	0	4	2
9	22MC410CI	Constitution of India	3	0	0	0
10	22CS410PC	Skill Development Course	0	0	2	1
		Total	18	0	10	20

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	P	Credits
1	22DS501PC	Machine Learning	3	0	0	3
2	22DS502PC	Introduction to Data Science	3	1	0	4
3	22CS502PC	Computer Networks	3	0	0	3
4		Professional Elective - I	3	0	0	3
5		Professional Elective - II	3	0	0	3
6	22DS503PC	Machine Learning Lab	0	0	2	1
7	22DS504PC	R Programming Lab	0	0	2	1
8	22CS504PC	Computer Networks Lab	0	0	2	1
9	22MC509IP	Intellectual Property Rights	3	0	0	0
10	22CS506PC	Skill Development Course	0	0	2	1
		Total	18	1	12	20

III YEAR II SEMESTER

	Course					
S. No.	Code	Course Title	L	T	P	Credits
1	22DS601PC	Automata Theory and Compiler Design	3	0	0	3
2	22DS602PC	Algorithm Design and Analysis	3	0	0	3
3	22DS603PC	Big Data Analytics	3	0	0	3
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6	22DS604PC	Big Data Analytics Lab	0	0	2	1
7		Professional Elective - III Lab	0	0	2	1
8	22EN608HS	Advanced English Communication Skills Lab	0	0	2	1
9	22MC609ES	Environmental Science	3	0	0	0
10	22CS606PC	Industrial Oriented Mini Project/ Summer Internship/ Skill Development Course	0	0	4	2
		Total	18	0	10	20

Environmental Science in III Yr II Sem Should be Registered by Lateral Entry Students Only.

IV YEAR I SEMESTER

	Course					
S. No.	Code	Course Title	L	T	P	Credits
1	22DS701PC	Predictive Analytics	3	0	0	3
2	22DS702PC	Web and Social Media Analytics	3	0	0	3
3		Professional Elective – IV	3	0	0	3
4		Professional Elective – V	3	0	0	3
5		Open Elective – II	3	0	0	3
6	22DS703PC	Predictive Analytics Lab	0	0	2	1
7	22DS704PC	Web and Social Media Analytics Lab	0	0	2	1
8	22CS705PC	Project Stage – I	0	0	6	3
		Total	15	0	10	20

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	P	Credits
1	22SM801MS	Organizational Behavior	3	0	0	3
2		Professional Elective – VI	3	0	0	3
3		Open Elective – III	3	0	0	3
4	22CS802PC	Project Stage – II including Seminar	0	0	22	9+2
		Total	9	0	22	20

^{*}MC-Satisfactory/Unsatisfactory

#Skill Course-1 credit with 2 Practical Hours

Professional Elective - I

1 Totessional Elective - 1							
22DS511PE	Data Warehousing and Business Intelligence						
22DS512PE	Artificial Intelligence						
22DS513PE	Web Programming						
22CS514PE	Image Processing						
22DS515PE	Computer Graphics						

Professional Elective - II

22DS521PE	Spatial and Multimedia Databases
22DS522PE	Software Project Management
22CS523PE	Information Retrieval Systems
22DS524PE	DevOps
22DS525PE	Computer Vision and Robotics

Professional Elective - III

22DS631PE	Data Visualization Techniques
22DS632PE	Cryptography and Network Security
22CS633PE	Scripting Languages
22CS634PE	Mobile Application Development
22CS635PE	Software Testing Methodologies

[#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective -IV

22DS741PE	Quantum Computing
22DS742PE	Information Storage Management
22DS743PE	Natural Language Processing
22CS744PE	Cloud Computing
22DS745PE	Internet of Things

Professional Elective -V

22DS751PE	Privacy Preserving Data Publishing
22DS752PE	Database Security
22DS753PE	Data Science Applications
22DS754PE	Mining Massive Datasets
22DS755PE	Exploratory Data Analysis

Professional Elective – VI

22DS861PE	Data Stream Mining
22DS862PE	Web Security
22DS863PE	Video Analytics
22DS864PE	Blockchain Technology
22DS865PE	Parallel and Distributed Computing

Skill Development Course

II Year – I Semester

	12 1 1111
SD31	Data Visualization – R Programming
SD32	Power BI
SD33	Node JS
SD34	React JS
SD35	Django
SD36	Prolog
SD37	Lisp
SD38	Pyswip

II Year – II Semester

SD41	Data Visualization – R Programming
SD42	Power BI
SD43	Node JS
SD44	React JS
SD45	Django
SD46	Prolog
SD47	Lisp
SD48	Pyswip

III Year – I Semester

SD51	UI design - Flutter
SD52	ETL - Kafka
SD53	Talend
SD54	Big data - Spark
SD55	DevOps

III Year – II Semester

SD61	UI design – Flutter
SD62	ETL – Kafka
SD63	Talend
SD64	Big data – Spark
SD65	DevOps

Open Elective – I

22DS611OE	Fundamentals of Data Science
22DS612OE	R Programming

Open Elective – II

22DS721OE	Data Mining
22DS722OE	Data Analytics

Open Elective – III

22DS831OE	Introduction to Social Media Mining
22DS722OE	Data Visualization using Python

22DS501PC: MACHINE LEARNING (Common To CSE(DS), CSE(AIML) & IT)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives:

- To introduce students to the basic concepts and techniques of Machine Learning.
- To have a thorough understanding of the Supervised and Unsupervised learning techniques
- To study the various probability-based learning techniques

Course Outcomes:

- Distinguish between, supervised, unsupervised and semi-supervised learning
- Understand algorithms for building classifiers applied on datasets of non-linearly separable classes
- Understand the principles of evolutionary computing algorithms
- Design an ensembler to increase the classification accuracy

UNIT - I

Learning - Types of Machine Learning - Supervised Learning - The Brain and the Neuron - Design a Learning System - Perspectives and Issues in Machine Learning - Concept Learning Task - Concept Learning as Search - Finding a Maximally Specific Hypothesis - Version Spaces and the Candidate Elimination Algorithm - Linear Discriminants: - Perceptron - Linear Separability - Linear Regression.

UNIT - II

Multi-layer Perceptron- Going Forwards - Going Backwards: Back Propagation Error - Multi-layer Perceptron in Practice - Examples of using the MLP - Overview - Deriving Back-Propagation - Radial Basis Functions and Splines - Concepts - RBF Network - Curse of Dimensionality - Interpolations and Basis Functions - Support Vector Machines

UNIT - III

Learning with Trees - Decision Trees - Constructing Decision Trees - Classification and Regression Trees - Ensemble Learning - Boosting - Bagging - Different ways to Combine Classifiers - Basic Statistics - Gaussian Mixture Models - Nearest Neighbor Methods - Unsupervised Learning - K means Algorithms

UNIT - IV

Dimensionality Reduction - Linear Discriminant Analysis - Principal Component Analysis - Factor Analysis - Independent Component Analysis - Locally Linear Embedding - Isomap - Least Squares Optimization

Evolutionary Learning - Genetic algorithms - Genetic Offspring: - Genetic Operators - Using Genetic Algorithms

UNIT - V

Reinforcement Learning - Overview - Getting Lost Example

Markov Chain Monte Carlo Methods - Sampling - Proposal Distribution - Markov Chain Monte Carlo - Graphical Models - Bayesian Networks - Markov Random Fields - Hidden Markov Models - Tracking Methods

TEXT BOOKS:

1. Stephen Marsland, Machine Learning – An Algorithmic Perspective, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013.
- 2. Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data||, First Edition, Cambridge University Press, 2012.
- 3. Jason Bell, Machine learning Hands on for Developers and Technical Professionals, First Edition, Wiley, 2014
- 4. Ethem Alpaydin, Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014

22DS502PC: INTRODUCTION TO DATA SCIENCE

B.Tech. III Year I Sem. L T P C 3 1 0 4

Course Objectives:

 Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration

- Understand the basic types of data and basic statistics
- · Identify the importance of data reduction and data visualization techniques

Course Outcomes:

- Understand basic terms of statistical modeling and data science
- Implementation of R programming concepts
- utilize R elements for data visualization and prediction

UNIT- I

Introduction

Definition of Data Science- Big Data and Data Science hype - and getting past the hype - Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model - Over fitting.

Basics of R: Introduction, R-Environment Setup, Programming with R, Basic Data Types.

UNIT- II Data Types & Statistical Description

Types of Data: Attributes and Measurement, Attribute, The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range, Graphic Displays of Basic Statistical Descriptions of Data.

UNIT-III

Vectors: Creating and Naming Vectors, Vector Arithmetic, Vector sub setting,

Matrices: Creating and Naming Matrices, Matrix Sub setting, Arrays, Class.

Factors and Data Frames: Introduction to Factors: Factor Levels, Summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, subsetting of Data Frames, Extending Data Frames, Sorting Data Frames.

Lists: Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors

UNIT-IV

Conditionals and Control Flow: Relational Operators, Relational Operators and Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements.

Iterative Programming in R: Introduction, While Loop, For Loop, Looping Over List.

Functions in R: Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R.

UNIT-V

Charts and Graphs: Introduction, Pie Chart: Chart Legend, Bar Chart, Box Plot, Histogram, Line Graph: Multiple Lines in Line Graph, Scatter Plot.

Regression: Linear Regression Analysis, Multiple Linear regression

TEXT BOOKS:

- Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014
- 2. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications.

- 1. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems.
- 2. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.
- 3. Brain S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, 4 LLC, 2014.
- 4. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008.
- 5. Paul Teetor, "R Cookbook", O'Reilly, 2011.

22CS502PC: COMPUTER NETWORKS (Common To CSE, CSE(DS) & CSE(AIML))

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites

- 1. A course on "Programming for problem solving"
- 2. A course on "Data Structures"

Course Objectives

- The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
- Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- Gain the knowledge of the basic computer network technology.
- Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- Obtain the skills of subnetting and routing mechanisms.
- Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless Transmission.

Data link layer: Design issues, framing, Error detection and correction.

UNIT-II

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

UNIT - IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT-V

Application Layer -Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

 Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

22DS511PE: DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective – I)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Course Objectives:

- This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making
- Students will learn how to design and create a data warehouse, and how to utilize the process of extracting, transforming, and loading (ETL) data into data warehouses.

Course Outcomes:

- Understand architecture of data warehouse and OLAP operations.
- Understand Fundamental concepts of BI
- Application of BI Key Performance indicators
- Understand Utilization of Advanced BI Tools and their Implementation.
- Implementation of BI Techniques and BI Ethics.

UNIT - I

Data Warehouse, Data Warehouse Modelling, OLAP operations, Data Qube Computation methods

UNIT - II

Business Intelligence Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics. BI Life Cycle. Data for BI - Data Issues and Data Quality for BI.

UNIT - III

BI Implementation - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts-A cyclic process of Intelligence Creation. The value of Business Intelligence-Value driven and Information use.

UNIT-IV

Advanced BI - Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME)

UNIT-V

Business Intelligence and integration implementation-connecting in BI systems- Issues of legality-Privacy and ethics- Social networking and BI.

TEXT BOOKS:

- Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier, 4th Edition.
- 2. Rajiv Sabherwal "Business Intelligence" Wiley Publications, 2012.

- 1. Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009.
- David Loshin, Business Intelligence The Savy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009.

- 3. Philo Janus, Stacia Misner, Building Integrated Business Intelligence. Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011.
- 4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)]
- 5. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007
- 6. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 7. Data Mining Introductory and Advanced topics Margaret H Dunham, PEA.

22DS512PE: ARTIFICIAL INTELLIGENCE (Professional Elective - I)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites:

1. Programming for problem solving, Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- · Understand search strategies and intelligent agents
- Understand different adversarial search techniques
- Apply propositional logic, predicate logic for knowledge representation
- · Apply Al techniques to solve problems of game playing, and machine learning.

UNIT - I

Introduction to AI, Intelligent Agents, problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces

UNIT-II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha-Beta Pruning, Imperfect Real-Time Decisions. Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems. Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

UNIT-IV

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

UNIT-V

Uncertain knowledge and Learning Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

TEXT BOOK:

 Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henry Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education

22DS513PE: WEB PROGRAMMING (Professional Elective – I) (Common to CSE (DS) & CSE (AIML))

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- Understand the technologies used in Web Programming.
- Know the importance of object-oriented aspects of Scripting.
- Understand creating database connectivity using JDBC.
- Learn the concepts of web-based application using sockets.

Course Outcomes:

- Design web pages.
- Use technologies of Web Programming.
- Apply object-oriented aspects to Scripting.
- Create databases with connectivity using JDBC.
- Build web-based application using sockets.

UNIT – I Client side Programming

HTML- Basic Tags- List, Tables, Images, Forms, Frames, CSS

JAVA Script -

Web page Designing using HTML, Scripting basics- Client side and server side scripting. Java ScriptObject, names, literals, operators and expressions- statements and features- events - windows - documents - frames - data types - built-in functions- Browser object model - Verifying forms.-HTML5-CSS3- HTML 5 canvas - Web site creation using tools.

UNIT - II JAVA

Introduction to object-oriented programming-Features of Java - Data types, variables and arrays - Operators - Control statements - Classes and Methods - Inheritance. Packages and Interfaces - Exception Handling - Multithreaded Programming - Input/Output - Files - Utility Classes - String Handling.

UNIT - III JDBC

JDBC Overview - JDBC implementation - Connection class - Statements - Catching Database Results, handling database Queries. Networking- InetAddress class - URL class- TCP sockets - UDP sockets, Java Beans -RMI.

UNIT - IV APPLETS

Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

UNIT - V XML AND WEB SERVICES

Xml - Introduction-Form Navigation-XML Documents- XSL - XSLT- Web services-UDDI-WSDL-Java web services - Web resources.

TEXT BOOKS:

- 1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition.
- Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw- Hill Edition.
- 3. Michael Morrison XML Unleashed Tech media SAMS.

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition -- Tata McGraw-Hill Edition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

22CS514PE: IMAGE PROCESSING (Professional Elective – I) (Common To CSE, CSE(DS), CSE(AIML) & IT)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites

- 1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of digital signal processing is desirable.
- 2. A course on "Computational Mathematics"
- 3. A course on "Computer Oriented Statistical Methods"

Course Objectives

- Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
- The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

Course Outcomes

- Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
- Demonstrate the knowledge of filtering techniques.
- Demonstrate the knowledge of 2D transformation techniques.
- Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

UNIT - I

Digital Image Fundamentals: Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

UNIT-II

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

UNIT - III

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT-IV

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT-V

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

 Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2nd Ed. 2004.

- 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
- Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wiley, 3rd Edition, 2004.

22DS515PE: COMPUTER GRAPHICS (Professional Elective – I) (Common to CSE (DS) & CSE (AIML))

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites

1. Programming for problem solving and Data Structures

Course Objectives

Provide the basics of graphics systems including Points and lines, line drawing algorithms, 2D,
 3D objective transformations

Course Outcomes

- Explore applications of computer graphics
- Understand 2D, 3D geometric transformations and clipping algorithms
- Understand 3D object representations, curves, surfaces, polygon rendering methods, color models
- · Analyze animation sequence and visible surface detection methods

UNIT - I

Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random-scan systems, graphics monitors and work stations and input devices

Output primitives: Points and lines, line drawing algorithms (DDA and Bresenham's Algorithm) circlegenerating algorithms and ellipse - generating algorithms

Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms

UNIT-II

- **2-D geometric transformations:** Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems
- **2-D viewing:** The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, clipping operations, point clipping, Line clipping-Cohen Sutherland algorithms, Polygon clipping-Sutherland Hodgeman polygon clipping algorithm.

UNIT - III

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces, Polygon rendering methods, color models and color applications.

UNIT-IV

- **3-D Geometric transformations:** Translation, rotation, scaling, reflection and shear transformations, composite transformations.
- **3-D viewing:** Viewing pipeline, viewing coordinates, projections, view volume and general projection transforms and clipping.

UNIT-V

Computer animation: Design of animation sequence, general computer animation functions, raster animations, computer animation languages, key frame systems, motion specifications.

Visible surface detection methods: Classification, back-face detection, depth-buffer method, BSP-tree method, area sub-division method and octree method.

TEXT BOOKS:

1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.
- 4. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 5. Computer Graphics, Steven Harrington, TMH.

22DS521PE: SPATIAL AND MULTIMEDIA DATABASES (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Course Objective:

 Introduce the basic concepts, data models and indexing structures for spatial data, multimedia data.

Course Outcomes:

- Understand data models, storage, indexing and design of spatial databases.
- Evaluate multidimensional data structures
- Represent image database with R-tree
- Store and retrieve audio, video and multimedia data.

UNIT - I

Introduction to Spatial Databases: Overview, beneficiaries, GIA and SDBMS, users, Space taxonomy, query language, query processing, query optimization.

Spatial Concepts and Data Models: Models of Spatial information, three step database design, Extending the ER model with spatial concept, object-oriented data modeling, Spatial Query Languages.

UNIT-II

Spatial Storage and Indexing: Storage-disks and files, spatial indexing, TR*, spatial join index. Query processing and optimization – Evaluation of Spatial operations, query optimization, Analysis of Spatial index structures, distributed and parallel spatial database system.

Multidimensional Data Structures: k-d Trees, Point Quadtrees, The MX-Quadtree, R-Trees, comparison of Different Data Structures.

UNIT - III

Image Databases: Raw Images, Compressed Image Representations, Image Processing: Segmentation, Similarity-Based Retrieval, Alternative Image DB Paradigms, Representing Image DBs with Relations, Representing Image DBs with R-Trees, Retrieving Images By Spatial Layout, Implementations.

Text/Document Databases: Precision and Recall, Stop Lists, Word Stems, and Frequency Tables, Latent Semantic Indexing, TV-Trees, Other Retrieval Techniques

UNIT-IV

Video Databases: Organizing Content of a Single Video, Querying Content of Video Libraries, Video Segmentation, video Standards

Audio Databases: A General Model of Audio Data, Capturing Audio Content through Discrete Transformation, Indexing Audio Data

Multimedia Databases: Design and Architecture of a Multimedia Database, Organizing Multimedia Data Based on The Principle of Uniformity, Media Abstractions, Query Languages for Retrieving Multimedia Data, Indexing SMDSs with Enhanced Inverted Indices, Query Relaxation/Expansion.

UNIT- V

Creating Distributed Multimedia Presentations: Objects in Multimedia Presentations, Specifying Multimedia Documents with Temporal Constraints, Efficient Solution of Temporal Presentation Constraints, Spatial Constraints.

Distributed Media Servers: Distributed multimedia server architecture, distributed retrieval plans, optimal distributed retrieval plans.

TEXT BOOKS:

- 1. Shashi Shekhar, Sanjiv Chawla, Spatial Databases-A Tour, Pearson Education.
- 2. V. S. Subrahmanian Principles of Multimedia Database Systems, Morgan Kauffman.

- 1. Multimedia Databases: An object relational approach, Lynne Dunckley, Pearson Education.
- 2. Multimedia Database Systems, Prabhakaram, Springer.

22DS522PE: SOFTWARE PROJECT MANAGEMENT (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites:

1. A course on "Software Engineering".

Course Objectives

- To acquire knowledge on software process management
- To acquire managerial skills for software project development
- To understand software economics, workflows and frameworks.

Course Outcomes

- Understand the software economics to improve various phases of development.
- Examine the life cycle phases, artifacts, workflows and checkpoints of a process.
- Demonstrate the software project framework components.
- Analyze the need for various software management disciplines and metrics.

UNIT - I

Software Management Renaissance

Conventional Software Management: The waterfall model, conventional software Management performance. Evolution of Software Economics-Software economics, pragmatic software cost estimation. Improving Software Economics- Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

UNIT - II

A Software Management Process Framework-I

The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process. Life cycle phases- Engineering and production stages, inception, Elaboration, construction, transition phases. Artifacts of the process- The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.

UNIT - III

A Software Management Process Framework-II

Model based software architectures- A Management perspective and technical perspective. Work Flows of the process- Software process workflows, Iteration workflows. Checkpoints of the process-Major milestones, Minor Milestones, Periodic status assessments.

UNIT - IV

Software Management Discipline-I

Iterative Process Planning- Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning. Project Organizations and Responsibilities-Line-of-Business Organizations, Project Organizations, evolution of Organizations. Process Automation: Automation building blocks, The Project Environment.

UNIT - V

Software Management Discipline-II

Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. Tailoring the Process: Process discriminates. Future Software Project Management: modern Project Profiles, Next

generation Software economics, modern process transitions. Case Study: The command Center Processing and Display system- Replacement (CCPDS-R).

TEXT BOOK:

1. Software Project Management, Walker Royce, Addison-Wesley Pearson Education, 2005.

- 1. Software Project Management, Bob Hughes and Mike Cotterell: Tata McGraw-Hill Edition.
- 2. Software Project Management, Joel Henry, Pearson Education.
- 3. Software Project Management in practice, Pankaj Jalote, Pearson Education. 2005.

22CS523PE: INFORMATION RETRIEVAL SYSTEMS (Professional Elective - II) (Common To CSE & CSE(DS))

B.Tech. III Year I Sem. L T P C 3 0 0 3

Prerequisites:

1. Data Structures

Course Objectives:

- To learn the concepts and algorithms in Information Retrieval Systems
- To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

Course Outcomes:

- · Ability to apply IR principles to locate relevant information large collections of data
- Ability to design different document clustering algorithms
- Implement retrieval systems for web search tasks.
- Design an Information Retrieval System for web search tasks.

UNIT - I

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

UNIT-II

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models.

UNIT - III

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages

Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

UNIT-IV

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

UNIT-V

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

TEXT BOOK:

 Information Storage and Retrieval Systems - Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer

- Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
- 2. Information Storage & Retrieval by Robert Korfhage John Wiley & Sons.
- 3. Modern Information Retrieval by Yates and Neto Pearson Education.

22DS524PE: DEVOPS (Professional Elective - II)

B.Tech. III Year I Sem. L T P C 3 0 0 3

Pre-Requisites:

- 1. Software Engineering
- 2. Software Project Management

Course Objectives:

- Understand the skill sets and high-functioning teams involved in Agile, DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

Course Outcomes:

- Understand the various components of DevOps environment.
- Identify Software development models and architectures of DevOps
- Use different project management and integration tools.
- Select an appropriate testing tool and deployment model for project.

UNIT-I

Introduction to DevOps:

Introduction, Agile development model, DevOps and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, identifying bottlenecks.

UNIT-II:

Software development models and DevOps:

DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing. DevOps influence on Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Micro services and the data tier, DevOps, architecture, and resilience.

UNIT-III

Introduction to project management:

The need for source code control, the history of source code management, Roles and code, source code management system and migrations, shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

UNIT-IV

Integrating the system:

Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures.

UNIT-V

Testing Tools and Deployment:

Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development. Deployment of the system: Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, SaltStackand Docker.

TEXT BOOK

1. Joakim Verona., Practical DevOps, Packt Publishing, 2016.

- Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications.
- Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley.

22DS525PE: COMPUTER VISION AND ROBOTICS (Professional Elective - II)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Pre-Requisites: Linear Algebra and Probability.

Course Objectives:

- To understand the Fundamental Concepts Related To sources, shadows and shading
- To understand the The Geometry of Multiple Views

Course Outcomes:

- Implement fundamental image processing techniques required for computer vision
- · Implement boundary tracking techniques
- Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques and Implement motion related techniques.
- Develop applications using computer vision techniques.

UNIT - I

CAMERAS: Pinhole Cameras

Radiometry - Measuring Light: Light in Space, Light Surfaces, Important Special Cases

Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading

Models, Application: Photometric Stereo, Interreflections: Global Shading Models

Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.

UNIT-II

Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates

Edge Detection: Noise, Estimating Derivatives, Detecting Edges

Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.

UNIT - III

The Geometry of Multiple Views: Two Views

Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras

Segmentation by Clustering: Segmentation, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT-IV

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations

Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization

UNIT-V

Introduction to Robotics: Social Implications of Robotics, Brief history of Robotics, Attributes of hierarchical paradigm, Closed world assumption and frame problem, Representative Architectures, Attributes of Reactive Paradigm, Subsumption Architecture, Potential fields and Perception

Common sensing techniques for Reactive Robots: Logical sensors, Behavioural Sensor Fusion, Pro-prioceptive sensors, Proximity Sensors, Topological Planning and Metric Path Planning

TEXT BOOKS:

- 1. David A. Forsyth and Jean Ponce: Computer Vision A Modern Approach, PHI Learning (Indian Edition), 2009.
- 2. Robin Murphy, Introduction to Al Robotics, MIT Press

- 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. The Robotics premier, Maja J Matari, MIT Press
- 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

22DS503PC: MACHINE LEARNING LAB (Common To CSE(DS), CSE(AIML) & IT)

B.Tech. III Year I Sem. L T P C 0 0 2 1

Course Objective:

 The objective of this lab is to get an overview of the various machine learning techniques and can demonstrate them using python.

Course Outcomes:

- Understand modern notions in predictive data analysis
- Select data, model selection, model complexity and identify the trends
- Understand a range of machine learning algorithms along with their strengths and weaknesses
- Build predictive models from data and analyze their performance

List of Experiments

- Write a python program to compute Central Tendency Measures: Mean, Median, Mode Measure of Dispersion: Variance, Standard Deviation
- 2. Study of Python Basic Libraries such as Statistics, Math, Numpy and Scipy
- 3. Study of Python Libraries for ML application such as Pandas and Matplotlib
- 4. Write a Python program to implement Simple Linear Regression
- 5. Implementation of Multiple Linear Regression for House Price Prediction using sklearn
- 6. Implementation of Decision tree using sklearn and its parameter tuning
- 7. Implementation of KNN using sklearn
- 8. Implementation of Logistic Regression using sklearn
- 9. Implementation of K-Means Clustering
- 10. Performance analysis of Classification Algorithms on a specific dataset (Mini Project)

TEXT BOOK:

1. Machine Learning - Tom M. Mitchell, - MGH

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

22DS514PC: R PROGRAMMING LAB

B.Tech. III Year I Sem.

L T P C
0 0 2 1

Pre-requisites: Any programming language.

Course Objectives:

• Familiarize with R basic programming concepts, various data structures for handling datasets, various graph representations and Exploratory Data Analysis concepts

Course Outcomes:

- Setup R programming environment.
- Understand and use R Data types and R Data Structures.
- Develop programming logic using R Packages.
- Analyze data sets using R programming capabilities

LIST OF EXPERIMENTS:

- 1. Download and install R-Programming environment and install basic packages using install. packages() command in R.
- 2. Learn all the basics of R-Programming (Data types, Variables, Operators etc,.)
- 3. Write R command to
- i) Illustrate summation, subtraction, multiplication, and division operations on vectors using vectors.
- ii) Enumerate multiplication and division operations between matrices and vectors in R console
- 4. Write R command to
- i) Illustrates the usage of Vector subsetting and Matrix subsetting
- ii) Write a program to create an array of 3×3 matrixes with 3 rows and 3 columns.
- 5. Write an R program to draw i) Pie chart ii) 3D Pie Chart, iii) Bar Chart along with chart legend by considering suitable CSV file
- 6. Create a CSV file having Speed and Distance attributes with 1000 records. Write R program to draw i) Box plots
 - ii) Histogram
 - iii) Line Graph
 - iv) Multiple line graphs
 - v) Scatter plot

to demonstrate the relation between the cars speed and the distance.

- 7. Implement different data structures in R (Vectors, Lists, Data Frames)
- 8. Write an R program to read a csv file and analyze the data in the file using EDA (Explorative Data Analysis) techniques.
- 9. Write an R program to illustrate Linear Regression and Multi linear Regression considering suitable CSV file

TEXT BOOKS:

- 1. R Programming for Data Science by Roger D. Peng
- 2. The Art of R Programming by Norman Matloff Cengage Learning India.

- 1. Hadley Wickham, Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition, O'Reilly
- 2. Tilman M. Davies, The book of R a first course in programming and statistics, no starch press

22CS504PC: COMPUTER NETWORKS LAB (Common To CSE, CSE(DS) & CSE(AIML))

B.Tech. III Year I Sem. L T P C 0 0 2 1

Course Objectives

- To understand the working principle of various communication protocols.
- To understand the network simulator environment and visualize a network topology and observe its performance
- To analyze the traffic flow and the contents of protocol frames

Course Outcomes

- Implement data link layer farming methods
- Analyze error detection and error correction codes.
- Implement and analyze routing and congestion issues in network design.
- Implement Encoding and Decoding techniques used in presentation layer
- To be able to work with different network tools

List of Experiments

- Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.

10. Wireshark

- i. Packet Capture Using Wire shark
- ii. Starting Wire shark
- iii. Viewing Captured Traffic
- iv. Analysis and Statistics & Filters.

How to run Nmap scan

Operating System Detection using Nmap

Do the following using NS2 Simulator

- i. NS2 Simulator-Introduction
- ii. Simulate to Find the Number of Packets Dropped
- iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
- iv. Simulate to Find the Number of Packets Dropped due to Congestion
- v. Simulate to Compare Data Rate & Throughput.
- vi. Simulate to Plot Congestion for Different Source/Destination
- vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI.

- 1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education.
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

*22MC509IP: INTELLECTUAL PROPERTY RIGHTS (Common To CSE, CSE(DS), CSE(AIML) & IT)

B.Tech. III Year I Sem. L T P C 3 0 0 0

Course Objectives:

- Significance of intellectual property and its protection
- · Introduce various forms of intellectual property

Course Outcomes:

- Distinguish and Explain various forms of IPRs.
- Identify criteria to fit one's own intellectual work in particular form of IPRs.
- Apply statutory provisions to protect particular form of IPRs.
- Appraise new developments in IPR laws at national and international level

UNIT - I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copyrights: Fundamental of copyright law, originality of material, rights of reproduction, rights to perform the work publicly, copyright ownership issues, copyright registration, notice of copyright, International copyright law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secret law, determination of trade secret status, liability for misappropriations of trade secrets, protection for submission, trade secret litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copyright law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copyright law, international patent law, and international development in trade secrets law.

TEXT BOOK:

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.

REFERENCE BOOK:

 Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

22CS506PC: SKILL DEVELOPMENT COURSE (Common To CSE, CSE(DS), CSE(AIML) & IT))

B.Tech. III Year I Sem. L T P C 0 0 2 1

Course Objectives:

- Develop a comprehensive understanding of Extract, Transform, Load (ETL) processes using Apache Kafka and Talend.
- Understand how to scale Kafka clusters seamlessly to handle growing data volumes, ensuring optimal performance for ETL operations.

Course Outcomes:

- Learn to design and deploy fault-tolerant Kafka clusters, ensuring data integrity and availability in real-world scenarios.
- Gain practical experience in cluster management, topic creation, and basic operations such as producing and consuming messages.

LIST OF EXPERIMENTS:

- 1. Install Apache Kafka on a single node.
- 2. Demonstrate setting up a single-node, single-broker Kafka cluster and show basic operations such as creating topics and producing/consuming messages.
- 3. Extend the cluster to multiple brokers on a single node.
- 4. Write a simple Java program to create a Kafka producer and Produce messages to a topic.
- 5. Implement sending messages both synchronously and asynchronously in the producer.
- Develop a Java program to create a Kafka consumer and subscribe to a topic and consume messages.
- 7. Write a script to create a topic with specific partition and replication factor settings.
- 8. Simulate fault tolerance by shutting down one broker and observing the cluster behavior.
- 9. Implement operations such as listing topics, modifying configurations, and deleting topics.
- 10. Introduce Kafka Connect and demonstrate how to use connectors to integrate with external systems.
- 11. Implement a simple word count stream processing application using Kafka Stream
- 12. Implement Kafka integration with the Hadoop ecosystem.

TEXT BOOK:

1. Neha Narkhede, Gwen Shapira, Todd Palino, Kafka - The Definitive Guide: Real-time data and stream processing at scale, O'Reilly

22DS601PC: AUTOMATA THEORY AND COMPILER DESIGN (Common To CSE(DS) & IT)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives

- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation

Course Outcomes

- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- · Able to distinguish between decidability and undecidability.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool and design LR parsers

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory - Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT-II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages:

Statement of the pumping lemma, Applications of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state

Turing Machines:

Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability:

Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines

UNIT-IV

Introduction: The structure of a compiler

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical- Analyzer Generator Lex

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers

UNIT-V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3rd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science- Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

- Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
- 2. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 3. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 4. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 5. Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

22DS602PC: ALGORITHM DESIGN AND ANALYSIS (Common To CSE(DS) & IT)

B.Tech. III Year I Sem.

L T P C 3 0 0 3

Prerequisites: Programming for problem solving and Data Structures

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst, average, and bestcase analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- 1. Analyze the performance of algorithms
- 2. Choose appropriate data structures and algorithm design methods for a specified application
- 3. Understand the choice of data structures and the algorithm design methods

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT-II

Disjoint Sets: Disjoint set operations, union and find algorithms, Priority Queue- Heaps, Heapsort **Backtracking**: General method, applications, n-queen's problem, sum of subsets problem, graph Coloring, Hamiltonian cycles.

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT-IV

Greedy method: General method, applications- Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

UNIT-V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

TEXT BOOK:

 Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R.Tamassia, John Wiley and sons.

22DS603PC: BIG DATA ANALYTICS

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Course Objectives

Provide the knowledge of principles and techniques for Big data Analytics and give an
exposure of the frontiers of Big data Analytics

Courses Outcomes

- · Understand the importance of big data analytics and its types
- Perform analytics on big data
- · Proficiency in big data storage and processing in Hadoop
- Data analytics through MongoDB
- Data analytics through R

UNIT - I

Types of Digital data: Classification of Digital Data,

Introduction to Big Data: Evolution of Big Data, definition of big data, Traditional Business Intelligence vs BigData, Coexistence of Big Data and Data Warehouse.

Big Data Analytics: introduction to Big Data Analytics, What Big Data Analytics Isn't, Sudden Hype Around Big Data Analytics, Classification of Analytics, Greatest Challenges that Prevent Business from Capitalizing Big Data, Top Challenges Facing Big Data, Big Data Analytics Importance, Data Science, Terminologies used in Big Data Environments.

UNIT-II

Hadoop: Features of Hadoop, Key advantages of hadoop, versions of hadoop, overview of hadoop ecosystem, Hadoop distributions. Need of hadoop, RDBMS vs Hadoop, Distribution computing challenges, History of hadoop, Hadoop overview, HDFS

UNIT - III

Processing data with hadoop, introduction to mapreduce programming, mapper, reducer, combiner, partitioner

NoSQL: Types of NoSQL Databases, advantages of NoSQL, Use of NoSQL in industry, SQL vs NoSQL, newSQL, comparison of Nosql, sql and newsql

UNIT-IV

MongoDB, necessity of mongodb, terms used in mongodb and RDBMS, datatypes in mongoDB, mongodb query language

UNIT - V

Introduction to R programming, operators, control statements and functions, interfacing with R, vectors, matrices, lists, data frames, factors and tables, accessing input and output, graphs in R, R apply family

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 2. R programming for beginners, sandhya arora, latesh malik, university press.

- chandramouli subramanian, Asha A Geroge, C R Rene Robin, big data analytics, University press.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

22DS631PE: DATA VISUALIZATION TECHNIQUES (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives:

• To understand various data visualization techniques

Course Outcomes:

- Know the historical development and evolution of data visualization techniques.
- · Analyze and visualize high-dimensional datasets using appropriate techniques.
- Visualize large multidimensional datasets using appropriate methods.
- Create insightful visual representations for diverse types of data.

UNIT - I

Introduction, A Brief History of Data Visualization, Good Graphics, Static Graphics.

UNIT-II

Data Visualization Through Their Graph Representations, Graph-theoretic Graphics, High-dimensional Data Visualization, Multivariate Data Glyphs: Principles and Practice, Linked Views for Visual Exploration, Linked Data Views, Visualizing Trees and Forests.

UNIT - III

Multidimensional Scaling, Huge Multidimensional Data Visualization, Multivariate Visualization by Density Estimation, Structured Sets of Graphs, Structural Adaptive Smoothing by Propagation-Separation Methods, Smoothing Techniques for Visualization.

UNIT-IV

Data Visualization via Kernel Machines, Visualizing Cluster Analysis and Finite Mixture Models, Visualizing Contingency Tables, Mosaic Plots and their Variants.

UNIT-V

Parallel Coordinates: Visualization, Exploration and Classification of High- Dimensional Data, Matrix Visualization, Visualization in Bayesian Data Analysis.

TEXT BOOKS:

- 1. Handbook of Data Visualization by Chun-houh Chen, 2008.
- 2. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
- 3. Colin Ware, "Information Visualization Perception for Design", 2nd edition, Margon Kaufmann Publishers, 2004.

- Robert Spence "Information visualization Design for interaction", Pearson Education, 2nd Edition, 2007.
- 2. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

22DS632PE: CRYPTOGRAPHY AND NETWORK SECURITY (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives:

- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT-II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure

UNIT-IV

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH)

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security

UNIT - V

E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

22CS633PE: SCRIPTING LANGUAGES (Professional Elective – III) (Common To CSE, CSE(DS) & IT)

B.Tech. III Year II Sem.

L T P C 3 0 0 3

Prerequisites:

- 1. A course on "Computer Programming and Data Structures".
- 2. A course on "Object Oriented Programming Concepts".

Course Objectives:

- This course introduces the script programming paradigm
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an
 appropriate language for solving a given problem.
- Acquire programming skills in scripting language

UNIT-I

Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and web services

RubyTk - Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter

UNIT - III

Introduction to PERL and Scripting

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT-IV

Advanced perl

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT - V

TCL

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Programmers guide by Dabve Thomas Second edition

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 5. Perl Power, J. P. Flynt, Cengage Learning.

22CS634PE: MOBILE APPLICATION DEVELOPMENT (Professional Elective – III) (Common To CSE, CSE(DS) & IT)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Prerequisites

- 1. Acquaintance with JAVA programming.
- 2. A Course on DBMS.

Course Objectives

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes

- Understand the working of Android OS Practically.
- Develop Android user interfaces
- Develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features - Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools Android application components - Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes

Android Application Lifecycle - Activities, Activity lifecycle, activity states, monitoring state changes

UNIT-II

Android User Interface: Measurements - Device and pixel density independent measuring unit - s Layouts - Linear, Relative, Grid and Table Layouts

User Interface (UI) Components -Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling - Handling clicks or changes of various UI components

Fragments - Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers - Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications - Creating and Displaying notifications, Displaying Toasts

UNIT-IV

Persistent Storage: Files - Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database - Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOK:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

- Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013
- 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

22CS635PE: SOFTWARE TESTING METHODOLOGIES (Professional Elective – III) (Common To CSE, CSE(DS) & IT)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Prerequisites

1. Software Engineering

Course Objectives

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using the latest tools.

Course Outcomes

- · Understand purpose of testing and path testing
- Understand strategies in data flow testing and domain testing
- Develop logic-based test strategies
- · Understand graph matrices and its applications
- · Implement test cases using any testing automation tool

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT-II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/selenium/soapUI/Catalon).

TEXT BOOKS:

- 1. Software Testing techniques Baris Beizer, Dreamtech, second edition.
- 2. Software Testing Tools Dr. K. V. K. K. Prasad, Dreamtech.

- 1. The craft of software testing Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- Software Testing in the Real World Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.
- 5. Art of Software Testing Meyers, John Wiley.

22DS6110E: FUNDAMENTALS OF DATA SCIENCE (Open Elective - I)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives:

- Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration
- Understand the basic types of data and basic statistics
- Identify the importance of data reduction and data visualization techniques

Course Outcomes:

- · Understand basic terms of statistical modeling and data science
- Implementation of R programming concepts
- utilize R elements for data visualization and prediction

UNIT- I

Introduction

Definition of Data Science- Big Data and Data Science hype - and getting past the hype - Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model - Over fitting.

Basics of R: Introduction, R-Environment Setup, Programming with R, Basic Data Types.

UNIT-II

Data Types & Statistical Description

Types of Data: Attributes and Measurement, Attribute, The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range, Graphic Displays of Basic Statistical Descriptions of Data.

UNIT-III

Vectors: Creating and Naming Vectors, Vector Arithmetic, Vector sub setting,

Matrices: Creating and Naming Matrices, Matrix Sub setting, Arrays, Class.

Factors and Data Frames: Introduction to Factors: Factor Levels, Summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, subsetting of Data Frames, Extending Data Frames, Sorting Data Frames.

Lists: Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors

UNIT-IV

Conditionals and Control Flow: Relational Operators, Relational Operators and Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements.

Iterative Programming in R: Introduction, While Loop, For Loop, Looping Over List.

Functions in R: Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R.

UNIT-V

Charts and Graphs: Introduction, Pie Chart: Chart Legend, Bar Chart, Box Plot, Histogram, Line Graph: Multiple Lines in Line Graph, Scatter Plot.

Regression: Linear Regression Analysis, Multiple Linear regression

TEXT BOOKS:

- Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014
- 2. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications.

- 1. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems.
- 2. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education.
- 3. Brain S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, 4 LLC, 2014.
- 4. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008.
- 5. Paul Teetor, "R Cookbook", O'Reilly, 2011.

22DS612OE: R PROGRAMMING (Open Elective - I)

B.Tech. III Year II Sem. L T P C 3 0 0 3

Course Objectives:

- Understanding and being able to use basic programming concepts
- Automate data analysis
- · Working collaboratively and openly on code
- Knowing how to generate dynamic documents
- Being able to use a continuous test-driven development approach

Course Outcomes:

- Understand to use and program in the programming language R
- Understand to use R to solve statistical problems
- Implement and describe Monte Carlo the technology
- Implement minimize and maximize functions using R

UNIT - I

Introduction: Overview of R, R data types and objects, reading and writing data, sub setting R Objects, Essentials of the R Language, Installing R, Running R, Packages in R, Calculations, Complex numbers in R, Rounding, Arithmetic, Modulo and integer quotients, Variable names and assignment, Operators, Integers, Factors, Logical operations

UNIT - II

Control structures, functions, scoping rules, dates and times, Introduction to Functions, preview of Some Important R Data Structures, Vectors, Character Strings, Matrices, Lists, Data Frames, Classes Vectors: Generating sequences, Vectors and subscripts, Extracting elements of a vector using subscripts, Working with logical subscripts, Scalars, Vectors, Arrays, and Matrices, Adding and Deleting Vector Elements, Obtaining the Length of a Vector, Matrices and Arrays as Vectors Vector Arithmetic and Logical Operations, Vector Indexing, Common Vector Operations

UNIT - III

Lists: Creating Lists, General List Operations, List Indexing Adding and Deleting List Elements, Gettingthe Size of a List, Extended Example: Text Concordance Accessing List Components and Values Applying Functions to Lists, DATA FRAMES, Creating Data Frames, Accessing Data Frames, Other Matrix-Like Operations

UNIT - IV

Factors And Tables: Factors and Levels, Common Functions Used with Factors, Working with Tables, Matrix/Array-Like Operations on Tables, Extracting a Subtable, Finding the Largest Cells in a Table, Math Functions, Calculating a Probability, Cumulative Sums and Products, Minima and Maxima, Calculus, Functions for Statistical Distributions

UNIT-V

Graphics: Creating Graphs, Customizing Graphs, Saving Graphs to Files, Customizing Graphs, Creating Three-Dimensional Plots.

Debugging: Fundamental Principles of Debugging, Why Use a Debugging Tool?, Using R Debugging Facilities, Moving Up in the World: More Convenient Debugging Tools, Ensuring Consistency in Debugging Simulation Code, Syntax and Runtime Errors, Running GDB on R Itself.

TEXT BOOKS:

1. The Art of R Programming by Norman Matloff, Cengage Learning India.

- 1. R Programming for Data Science by Roger D. Peng
- 2. Hadley Wickham, Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition, O'Reilly
- 3. Tilman M. Davies, The book of R a first course in programming and statistics, no starch press.

22CS610PC: BIG DATA ANALYTICS LAB

B.Tech. III Year II Sem. L T P C 0 0 2 1

Course Objectives

- Provide knowledge of Big data Analytics principles and techniques.
- Designed to give an exposure of the frontiers of Big data Analytics

Course Outcomes

- Use Excel as an Analytical tool and visualization tool.
- Ability to program using HADOOP and Map reduce
- · Ability to perform data analytics using ML in R.
- · Use MongoDB to perform data analytics

List of Experiments

- Create a Hadoop cluster
- 2. Implement a simple map-reduce job that builds an inverted index on the set of input documents (Hadoop)
- 3. Process big data in HBase
- 4. Store and retrieve data in Pig
- 5. Perform data analysis using MongoDB
- 6. Using Power Pivot (Excel) Perform the following on any dataset
 - a. Big Data Analytics
 - b. Big Data Charting

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
- 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

- 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013)
- Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
- Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
- 4. Understanding Big data, Chris Eaton, Dirk deroos et al., McGraw Hill, 2012.
- 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
- Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

22DS611PE: DATA VISUALIZATION TECHNIQUES LAB (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Course Objectives:

- Understand the various types of data, apply and evaluate the principles of data visualization.
- Acquire skills to apply visualization techniques to a problem and its associated dataset.

Course Outcomes:

- Identify the different data types, visualization types to bring out the insight.
- Relate the visualization towards the problem based on the dataset to analyze and bring out valuable insight on a large dataset.
- Demonstrate the analysis of a large dataset using various visualization techniques and tools.
- Identify the different attributes and showcasing them in plots. Identify and create various visualizations for geospatial and table data.
- Ability to create and interpret plots using R/Python.

List of Experiments

- Acquiring and plotting data.
- 2. Statistical Analysis such as Multivariate Analysis, PCA, LDA, Correlation regression and analysis of variance
- 3. Financial analysis using Clustering, Histogram and HeatMap
- 4. Time-series analysis stock market
- 5. Visualization of various massive dataset Finance Healthcare Census Geospatial
- Visualization on Streaming dataset (Stock market dataset, weather forecasting)
- 7. Market-Basket Data analysis-visualization
- 8. Text visualization using web analytics

TEXT BOOKS:

- 1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
- 2. Colin Ware, "Information Visualization Perception for Design", 2nd edition, Margon Kaufmann Publishers, 2004.

- 1. Robert Spence "Information visualization Design for interaction", Pearson Education, 2 nd Edition, 2007.
- 2. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

22DS612PE: CRYPTOGRAPHY AND NETWORK SECURITY LAB (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Course Objectives:

- Explain the objectives of information security
- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.

Course Outcomes:

- Understand basic cryptographic algorithms, message and web authentication and security issues
- Identify information system requirements for both of them such as client and server.
- Understand the current legal issues towards information security.

List of Experiments:

- 1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and display the result.
- 2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result.
- 3. Write a Java program to perform encryption and decryption using the following algorithms
 - a. Ceaser cipher b. Substitution cipher c. Hill Cipher
- 4. Write a C/JAVA program to implement the DES algorithm logic.
- 5. Write a C/JAVA program to implement the Blowfish algorithm logic.
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.
- 8. Write a Java program to implement the RSA algorithm.
- 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.
- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 11. Calculate the message digest of a text using the MD5 algorithm in JAVA

TEXT BOOKS:

- Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition

- Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

22CS613PE: SCRIPTING LANGUAGES LAB (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Prerequisites: Any High level programming language (C, C++)

Course Objectives

- · To Understand the concepts of scripting languages for developing web based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes

- Ability to understand the differences between Scripting languages and programming languages
- Gain some fluency programming in Ruby, Perl, TCL

LIST OF EXPERIMENTS

- 1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
- 2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
- 3. Write a Ruby script which accept the users first and last name and print them in reverse order with a space between them
- 4. Write a Ruby script to accept a filename from the user print the extension of that
- 5. Write a Ruby script to find the greatest of three numbers
- 6. Write a Ruby script to print odd numbers from 10 to 1
- 7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
- 8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
- 9. Write a Ruby script to print the elements of a given array
- 10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
- 11. Write a TCL script to find the factorial of a number
- 12. Write a TCL script that multiplies the numbers from 1 to 10
- 13. Write a TCL script for sorting a list using a comparison function
- 14. Write a TCL script to (i) create a list (ii) append elements to the list (iii) Traverse the list (iv) Concatenate the list
- 15. Write a TCL script to comparing the file modified times.
- 16. Write a TCL script to Copy a file and translate to native format.
- 17. a) Write a Perl script to find the largest number among three numbers.
 - b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
- 18. Write a Perl program to implement the following list of manipulating functions
 - a) Shift
 - b) Unshift
 - c) Push
- 19. a) Write a Perl script to substitute a word, with another word in a string.
 - b) Write a Perl script to validate IP address and email address.
- 20. Write a Perl script to print the file in reverse order using command line arguments

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Progammers guide by Dabve Thomas Second edition

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 5. Perl Power, J. P. Flynt, Cengage Learning.

22CS614PE: MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective - III)

B.Tech. III Year II Sem. L T P C 0 0 2 1

Course Objectives:

- To learn how to develop Applications in an android environment.
- To learn how to develop user interface applications.
- To learn how to develop URL related applications.

Course Outcomes:

- · Understand the working of Android OS Practically.
- Develop user interfaces.
- Develop, deploy and maintain the Android Applications.

LIST OF EXPERIMENTS:

- 1. Create an Android application that shows Hello + name of the user and run it on an emulator.
- (b) Create an application that takes the name from a text box and shows hello message along with the name entered in the text box, when the user clicks the OK button.
- Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons
 for male and female), Age (numeric), Date of Birth (Datepicker), State (Spinner) and a Submit
 button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear
 Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
- 3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on the right fragment instead of the second screen with the back button. Use Fragment transactions and Rotation event listeners.
- 4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
- 5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
- 6. Create an application that uses a text file to store usernames and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with a Login Failed message.
- 7. Create a user registration application that stores the user details in a database table.
- 8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
- 9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
- Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.
- 11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
- 12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

22CS615PE: SOFTWARE TESTING METHODOLOGIES LAB (Professional Elective - III)

B.Tech. III Year II Sem.

L T P C 0 0 2 1

Prerequisites

A basic knowledge of programming.

Course Objectives

- To provide knowledge of software testing methods.
- To develop skills in automation of software testing and software test automation management using the latest tools.

Course Outcomes

- 1. Design and develop the best test strategies in accordance with the development model.
- 2. Design and develop GUI, Bitmap and database checkpoints
- 3. Develop database checkpoints for different checks
- 4. Perform batch testing with and without parameter passing

List of Experiments

- 1. Recording in context sensitive mode and analog mode
- 2. GUI checkpoint for single property
- 3. GUI checkpoint for single object/window
- 4. GUI checkpoint for multiple objects

5.

- a. Bitmap checkpoint for object/window
- b. Bitmap checkpoint for screen area
- 6. Database checkpoint for Default check
- 6. Database checkpoint for custom check
- 6. Database checkpoint for runtime record check

6.

- a. Data driven test for dynamic test data submission
- b. Data driven test through flat files
- c. Data driven test through front grids
- d. Data driven test through excel test
- a. Batch testing without parameter passing
- b. Batch testing with parameter passing
- 11. Data driven batch
- 11. Silent mode test execution without any interruption
- 12. Test case for calculator in windows application

TEXT BOOKS

- 1. Software Testing techniques, Baris Beizer, 2nd Edition, Dreamtech.
- 2. Software Testing Tools, Dr. K.V.K.K.Prasad, Dreamtech.

REFERENCE BOOKS

- 1. The craft of software testing, Brian Marick, Pearson Education.
- 2. Software Testing Techniques SPD(Oreille)
- 3. Software Testing in the Real World, Edward Kit, Pearson.
- 4. Effective methods of Software Testing, Perry, John Wiley.

Art of Software Testing, Meyers, John Wiley

22EN608HS: ADVANCED ENGLISH COMMUNICATION SKILLS LAB

B.Tech III Year II Sem.

L T P C 0 0 2 1

1. Introduction

The introduction of the Advanced English Communication Skills Lab is considered essential at the B.Tech 3rd year level. At this stage, the students need to prepare themselves for their career which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use appropriate English and perform the following:

- 1. Gathering ideas and information to organise ideas relevantly and coherently.
- 2. Making oral presentations.
- 3. Writing formal letters.
- 4. Transferring information from non-verbal to verbal texts and vice-versa.
- 5. Writing project/research reports/technical reports.
- 6. Participating in group discussions.
- 7. Engaging in debates.
- 8. Facing interviews.
- 9. Taking part in social and professional communication.

2. Objectives:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, with a focus on vocabulary
- To enable them to listen to English spoken at normal conversational speed by educated English speakers
- To respond appropriately in different socio-cultural and professional contexts
- To communicate their ideas relevantly and coherently in writing
- To prepare the students for placements.

3. Syllabus:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Listening and Reading Comprehension: Active Listening Development of Listening Skills Through Audio clips - Benefits of Reading - Methods and Techniques of Reading - Basic Steps to Effective Reading - Common Obstacles - Discourse Markers or Linkers - Subskills of reading - Reading for facts, negative facts and Specific Details- Guessing Meanings from Context, Inferring Meaning - Critical Reading - Reading Comprehension - Exercises for Practice.
- Activities on Writing Skills: Vocabulary for Competitive Examinations Planning for Writing Improving Writing Skills Structure and presentation of different types of writing Free Writing and Structured Writing Letter Writing a Letter of Application -Resume vs. Curriculum Vitae Writing a Résumé Styles of Résumé e-Correspondence Emails Blog Writing (N)etiquette Report Writing Importance of Reports Types and Formats of Reports- Technical Report Writing- Exercises for Practice.
- 3. Activities on Presentation Skills Starting a conversation responding appropriately and relevantly using the right language and body language Role Play in different situations including Seeking Clarification, Making a Request, Asking for and Refusing Permission, Participating in a Small Talk Oral presentations (individual and group) through JAM sessions- PPTs Importance of Presentation Skills Planning, Preparing, Rehearsing and Making a Presentation Dealing with

- Glossophobia or Stage Fear Understanding Nuances of Delivery Presentations through Posters/Projects/Reports Checklist for Making a Presentation and Rubrics of Evaluation
- 4. Activities on Group Discussion (GD): Types of GD and GD as a part of a Selection Procedure Dynamics of Group Discussion- Myths of GD Intervention, Summarizing Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas Do's and Don'ts GD Strategies Exercises for Practice.
- 5. **Interview Skills**: Concept and Process Interview Preparation Techniques Types of Interview Questions Pre-interview Planning, Opening Strategies, Answering Strategies Interview Through Tele-conference & Video-conference Mock Interviews.

4. Minimum Requirement:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- · Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- · One PC with latest configuration for the teacher
- T. V, a digital stereo & Camcorder
- Headphones of High quality
- **5. Suggested Software:** The software consisting of the prescribed topics elaborated above should be procured and used.
 - TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
 - Oxford Advanced Learner's Dictionary, 10th Edition
 - Cambridge Advanced Learner's Dictionary
 - DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
 - Lingua TOEFL CBT Insider, by Dreamtech

6. Books Recommended:

- Rizvi, M. Ashraf (2018). Effective Technical Communication. (2nd ed.). McGraw Hill Education (India) Pvt. Ltd.
- 2. Suresh Kumar, E. (2015). Engineering English. Orient BlackSwan Pvt. Ltd.
- Bailey, Stephen. (2018). Academic Writing: A Handbook for International Students. (5th Edition).
 Routledge.
- 4. Koneru, Aruna. (2016). Professional Communication. McGraw Hill Education (India) Pvt. Ltd.
- 5. Raman, Meenakshi & Sharma, Sangeeta. (2022). *Technical Communication, Principles and Practice*. (4TH Edition) Oxford University Press.
- 6. Anderson, Paul V. (2007). Technical Communication. Cengage Learning Pvt. Ltd. New Delhi.
- 7. McCarthy, Michael; O'Dell, Felicity & Redman, Stuart. (2017). *English Vocabulary in Use* Series. Cambridge University Press
- 8. Sen, Leela. (2009). Communication Skills. PHI Learning Pvt Ltd., New Delhi.
- 9. Elbow, Peter. (1998). Writing with Power. Oxford University Press.
- 10. Goleman, Daniel. (2013). *Emotional Intelligence: Why it can matter more than IQ*. Bloomsbury Publishing.

*22MC609ES: ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem. L T P C 3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- · Understanding the environmental policies and regulations

Course Outcomes:

 Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts: C**limate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-Gol Initiatives.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan

(EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.
- 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

22CS612PC: SKILL DEVELOPMENT COURSE (Common to CSE, CSE (DS), CSE (AIML) & IT)

B.Tech. III Year II Sem. L T P C 0 0 4 2

Course Objectives:

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widges and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

Course Outcomes:

- Implements Flutter Widgets and Layouts
- Responsive UI Design and with Navigation in Flutter
- Create custom widgets for specific UI elements and also Apply styling using themes and custom styles.
- Design a form with various input fields, along with validation and error handling
- Fetches data and write code for unit Test for UI components and also animation

List of Experiments: Students need to implement the following experiments

- 1. a) Install Flutter and Dart SDK.
 - b) Write a simple Dart program to understand the language basics.
- 2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
 - b) Implement different layout structures using Row, Column, and Stack widgets.
- 3. a) Design a responsive UI that adapts to different screen sizes.
 - b) Implement media queries and breakpoints for responsiveness.
- 4. a) Set up navigation between different screens using Navigator.
 - b) Implement navigation with named routes.
- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- 6. a) Create custom widgets for specific UI elements.
 - b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- 8. a) Add animations to UI elements using Flutter's animation framework.
 - b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.
 - b) Display the fetched data in a meaningful way in the UI.
- 10. a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOK:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.

22DS701PC: PREDICTIVE ANALYTICS

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisite:

1. Data Science/Data analytics

Course Objectives:

To learn the basics and applications of predictive analytics using different techniques

Course Outcomes:

- Understand the processing steps for predictive analytics
- Construct and deploy prediction models with integrity
- Explore various techniques (machine learning/data mining, ensemble) for predictive analytics.
- Apply predictive analytics to real world examples.

UNIT - I

Introduction – types of analytics, applications of predictive analytics, overview of predictive analytics. Setting up the problem - processing steps, business understanding, objectives, data for predictive modeling, columns as measures, target variables, measures of success for predictive models.

UNIT-II

Prediction effect, deployment of prediction model, ethics and responsibilities The Data effect

UNIT-III

Machine Learning for prediction

Predictive modeling - decision trees, logistic regression, neural network, kNN, Bayesian method,

Regression model

Assessing Predictive models - Batch Approach to Model Assessment, Percent Correct Classification, Rank-Ordered Approach to Model Assessment, Assessing Regression Models

UNIT-IV

Ensemble effect

Model ensembles – motivation, wisdom of crowds, Bagging, Boosting, Random forests, stochastic gradient boosting, heterogeneous ensembles.

UNIT-V

Case studies: Survey analysis, question answering- challenges in text mining, persuasion by the numbers

TEXT BOOKS:

- Eric Siegel, Predictive analytics- the power to predict who will Click, buy, lie, or die, John Wiley & Sons, 2013.
- Dean Abbott, Applied Predictive Analytics Principles and Techniques for the Professional Data Analyst, 2014.

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning-Data Mining, Inference, and Prediction, Second Edition, Springer Verlag, 2009.
- 2. G. James, D. Witten, T. Hastie, R. Tibshirani-An introduction to statistical learning with applications in R, Springer, 2013.
- 3. E. Alpaydin, Introduction to Machine Learning, Prentice Hall of India, 2010.

22DS702PC: WEB AND SOCIAL MEDIA ANALYTICS

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

Exposure to various web and social media analytic techniques.

Course Outcomes:

- · Knowledge on decision support systems
- Apply natural language processing concepts on text analytics
- Understand sentiment analysis
- Knowledge on search engine optimization and web analytics

UNIT - I

An Overview of Business Intelligence, Analytics, and Decision Support

Analytics to Manage a Vaccine Supply Chain Effectively and Safely, Changing Business Environments and Computerized Decision Support, Information Systems Support for Decision Making, The Concept of Decision Support Systems (DSS), Business Analytics Overview, Brief Introduction to Big Data Analytics

UNIT-II

Text Analytics and Text Mining

Machine Versus Men on Jeopardy: The Story of Watson, Text Analytics and Text Mining Concepts and Definitions, Natural Language Processing, Text Mining Applications, Text Mining Process, Text Mining Tools

UNIT - III

Sentiment Analysis

Sentiment Analysis Overview, Sentiment Analysis Applications, Sentiment Analysis Process, Sentiment Analysis and Speech Analytics

UNIT-IV

Web Analytics, Web Mining

Security First Insurance Deepens Connection with Policyholders, Web Mining Overview, Web Content and Web Structure Mining, Search Engines, Search Engine Optimization, Web Usage Mining (Web Analytics), Web Analytics Maturity Model and Web Analytics Tools

UNIT-V

Social Analytics and Social Network Analysis

Social Analytics and Social Network Analysis, Social Media Definitions and Concepts, Social Media Analytics

Prescriptive Analytics - Optimization and Multi-Criteria Systems:

Multiple Goals, Sensitivity Analysis, What-If Analysis, and Goal Seeking

TEXT BOOK:

1. Ramesh Sharda, Dursun Delen, Efraim Turban, Business Intelligence and Analytics: Systems for Decision Support, Pearson Education

- Rajiv Sabherwal, Irma Becerra- Fernandez," Business Intelligence-Practice, Technologies and Management", John Wiley 2011.
- 2. Lariss T. Moss, ShakuAtre, "Business Intelligence Roadmap", Addison-Wesley It Service.
- 3. Yuli Vasiliev, "Oracle Business Intelligence: The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012.

22DS741PE: QUANTUM COMPUTING (Professional Elective – IV) (Common to CSE (DS) & CSE (AIML))

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Course Objectives

- To introduce the fundamentals of quantum computing
- · The problem-solving approach using finite dimensional mathematics

Course Outcomes

- Understand basics of quantum computing
- · Understand physical implementation of Qubit
- Understand Quantum algorithms and their implementation
- Understand The Impact of Quantum Computing on Cryptography

UNIT - I

History of Quantum Computing: Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations

UNIT-II

Background Mathematics: Basics of Linear Algebra, Hilbert space, Probabilities and measurements. Background Physics: Paul's exclusion Principle, Superposition, Entanglement and super-symmetry, density operators and correlation, basics of quantum mechanics, Measurements in bases other than computational basis. Background Biology: Basic concepts of Genomics and Proteomics (Central Dogma)

UNIT - III

Qubit: Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.

UNIT-IV

Quantum Algorithms: Classical computation on quantum computers. Relationship between quantum and classical complexity classes. Deutsch's algorithm, Deutsch's-Jozsa algorithm, Shor's factorization algorithm, Grover's search algorithm.

UNIT - V

Noise and error correction: Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation

TEXT BOOK:

1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge.

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci
- Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II.
- 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms.

22DS742PE: INFORMATION STORAGE MANAGEMENT (Professional Elective - IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Course Objectives:

- To understand various segments of storage technology and architectures
- To explore the inherent power of information
- To describe the different backup, recovery and replication strategies

Course Outcomes:

- Understand the evolution of storage technology and Intelligent Storage Systems
- Explore the key concepts of various Storage Networking Technologies DAS, SANs, NAS and CAS
- Understand the basics of Storage Virtualization
- Understand the concepts of Storage security and Storage Infrastructure Management
- Analyze the purpose of backup, recovery and replication Strategies

UNIT - I

Introduction to Information Storage and Management: Information Storage, Evolution of Storage Technology and Architecture, Data Center Infrastructure, Key Challenges in Managing Information, Information Lifecycle. Storage System Environment - Data Protection: RAID - Intelligent Storage System.

UNIT-II

Direct-Attached Storage and Introduction to SCSI

Types of DAS, DAS Benefits and Limitations, Disk Drive Interfaces, Introduction to Parallel SCSI, SCSI Command Model,

Storage Area Networks

Fibre Channel: Overview, The SAN and Its Evolution, Components of SAN, FC Connectivity, Fibre Channel Ports, Fibre Channel Architecture, Zoning, Fibre Channel Login Types, FC Topologies, Concepts in Practice: EMC Connectrix

Network-Attached Storage

General-Purpose Servers vs. NAS Devices, Benefits of NAS, NAS File I/O, Components of NAS, NAS Implementations, NAS File-Sharing Protocols, NAS I/O Operations, Factors Affecting NAS Performance and Availability, Concepts in Practice: EMC Celerra

UNIT-III

Content-Addressed Storage

Fixed Content and Archives, Types of Archives, Features and Benefits of CAS, CAS Architecture, Object Storage and Retrieval in CAS, CAS Examples, Concepts in Practice: EMC Centera

Storage Virtualization

Forms of Virtualization, SNIA Storage Virtualization Taxonomy, Storage Virtualization Configurations, Storage Virtualization Challenges, Types of Storage Virtualization, Concepts in Practice

UNIT-IV

Backup and Recovery

Backup Purpose, Backup Considerations, Backup Granularity, Recovery Considerations, Backup Methods, Backup Process, Backup and Restore Operations, Backup Topologies, Backup in NAS Environments, Backup Technologies, Concepts in Practice: EMC NetWorker

Local Replication

Local Replication, Source and Target, Uses of Local Replicas, Data Consistency, Local Replication Technologies, Restore and Restart Considerations, Creating Multiple Replicas, Management Interface, Concepts in Practice: EMC TimeFinder and EMC SnapView

Remote Replication

Modes of Remote Replication, Remote Replication Technologies, Network Infrastructure, Concepts in Practice: EMC SRDF, EMC SAN Copy, and EMC MirrorView

UNIT - V

Securing the Storage Infrastructure

Storage Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking

Managing the Storage Infrastructure

Monitoring the Storage Infrastructure, Storage Management Activities, Storage Infrastructure Management Challenges, Developing an Ideal Solution, Concepts in Practice: EMC ControlCenter

TEXT BOOKS:

- 1. Marc Farley Osborne, "Building Storage Networks", Tata McGraw Hill, 2001.
- Robert Spalding and Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, 2003.
- 3. Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Ltd., 2002.

- 1. Gerald J Kowalski and Mark T Maybury," Information Storage Retrieval Systems theory & Implementation", BS Publications, 2000.
- 2. Thejendra BS, "Disaster Recovery & Business continuity", Shroff Publishers & Distributors, 2006.

22DS743PE: NATURAL LANGUAGE PROCESSING (Professional Elective - IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites:

Data structures and compiler design

Course Objectives:

 Introduction to some of the problems and solutions of NLP and their relation to linguistics and statistics.

Course Outcomes:

- Show sensitivity to linguistic phenomena and an ability to model them with formal grammars.
- Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems
- Able to manipulate probabilities, construct statistical models over strings and trees, and estimate parameters using supervised and unsupervised training methods.
- Able to design, implement, and analyze NLP algorithms; and design different language modeling Techniques.

UNIT - I

Finding the Structure of Words: Words and Their Components, Issues and Challenges, Morphological Models

Finding the Structure of Documents: Introduction, Methods, Complexity of the Approaches, Performances of the Approaches, Features

UNIT-II

Syntax I: Parsing Natural Language, Treebanks: A Data-Driven Approach to Syntax, Representation of Syntactic Structure, Parsing Algorithms

UNIT - III

Syntax II: Models for Ambiguity Resolution in Parsing, Multilingual Issues

Semantic Parsing I: Introduction, Semantic Interpretation, System Paradigms, Word Sense

UNIT-IV

Semantic Parsing II: Predicate-Argument Structure, Meaning Representation Systems

UNIT - V

Language Modeling: Introduction, N-Gram Models, Language Model Evaluation, Bayesian parameter estimation, Language Model Adaptation, Language Models- class based, variable length, Bayesian topic based, Multilingual and Cross Lingual Language Modeling

TEXT BOOKS:

 Multilingual natural Language Processing Applications: From Theory to Practice - Daniel M. Bikel and Imed Zitouni, Pearson Publication

- 1. Speech and Natural Language Processing Daniel Jurafsky& James H Martin, Pearson Publications.
- 2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

22DS742PE: CLOUD COMPUTING (Professional Elective - V)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Pre-requisites:

- 1. A course on "Computer Networks".
- 2. A course on "Operating System".

Course Objectives:

- This course provides an insight into cloud computing.
- Topics covered include- Cloud Computing Architecture, Deployment Models, Service Models, Technological Drivers for Cloud Computing, Networking for Cloud Computing and Security in Cloud Computing.

Course Outcomes:

- Understand different computing paradigms and potential of the paradigms and specifically cloud computing
- Understand cloud service types, cloud deployment models and technologies supporting and driving the cloud
- Acquire the knowledge of programming models for cloud and development of software application that runs the cloud and various services available from major cloud providers
- Understand the security concerns and issues in cloud computing
- Acquire the knowledge of advances in cloud computing.

UNIT - I

Computing Paradigms, Cloud Computing Fundamentals, Cloud Computing Architecture and Management

UNIT - II

Cloud Deployment Models, Cloud Service Models, Technological Drivers for Cloud Computing: SOA and Cloud, Multicore Technology, Web 2.0 and Web 3.0, Pervasive Computing, Operating System, Application Environment

UNIT - III

Virtualization, Programming Models for Cloud Computing: MapReduce, Cloud Haskell, Software Development in Cloud

UNIT-IV

Networking for Cloud Computing: Introduction, Overview of Data Center Environment, Networking Issues in Data Centers, Transport Layer Issues in DCNs, Cloud Service Providers

UNIT - V

Security in Cloud Computing, and Advanced Concepts in Cloud Computing

TEXT BOOK:

1. Chandrasekaran, K. Essentials of cloud computing. CRC Press, 2014

- Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley, 2011
- Enterprise Cloud Computing Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010
- 3. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010

22DS745PE: INTERNET OF THINGS (Professional Elective - IV)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Pre-Requisites: Computer organization, Computer Networks

Course Objectives:

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices

Course Outcomes:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Identify the applications of IoT in Industry.

UNIT - I

Introduction to Internet of Things -Definition and Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT Levels and Deployment Templates

Domain Specific IoTs - Home automation, Environment, Agriculture, Health and Lifestyle

UNIT-II

IoT and M2M - M2M, Difference between IoT and M2M, SDN and NFV for IoT,

IoT System Management with NETCOZF, YANG- Need for IoT system Management, Simple Network management protocol, Network operator requirements, NETCONF, YANG, IoT Systems Management with NETCONF-YANG

UNIT-III

IoT Systems – Logical design using Python-Introduction to Python – Python Data types & Data structures, Control flow, Functions, Modules, Packaging, File handling, Data/Time operations, Classes, Exception, Python packages of Interest for IoT

UNIT-IV

IoT Physical Devices and Endpoints - Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry PI with Python, Other IoT devices.

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs, WAMP-AutoBahn for IoT, Xively Cloud for IoT, Python web application framework -Django, Designing a RESTful web API

UNIT V

Case studies- Home Automation, Environment-weather monitoring-weather reporting- air pollution monitoring, Agriculture.

TEXT BOOK:

 Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.

REFERENCE BOOK:

 Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

22DS751PE: PRIVACY PRESERVING DATA PUBLISHING (Professional Elective - V)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites

A course on "Data Mining".

Course Objectives

- The aim of the course is to introduce the fundamentals of Privacy Preserving Data Mining Methods
- The course gives an overview of Anonymity and its Measures, Multiplicative Perturbation for Privacy-Preserving Data Mining, techniques for Utility-based Privacy Preserving Data

Course Outcomes

- Understand the concepts of Privacy Preserving Data Mining Models and Algorithms
- Demonstrate a comprehensive understanding of different tasks associated in Inference Control Methods for Privacy-Preserving Data Mining
- Understand the concepts of Data Anonymization Methods and its Measures
- Evaluate and Appraise the solution designed for Multiplicative Perturbation
- Formulate, Design and Implement the solutions for Utility-based Privacy Preserving Data

UNIT-I

Introduction, Privacy-Preserving Data Mining Algorithms, The Randomization Method, Group Based Anonymization, Distributed Privacy-Preserving Data Mining

UNIT-II

Interface Control Methods

Introduction, A Classification of Microdata Protection Methods, Perturbative Masking Methods, Non-Perturbative Masking Methods, Synthetic Microdata Generation, Trading off Information Loss and Disclosure Risk.

UNIT-III

Measure of Anonymity

Data Anonymization Methods, A Classification of Methods, Statistical Measure of Anonymous, Probabilistic Measure of Anonymity, Computational Measure of Anonymity, reconstruction Methods for Randomization, Application of Randomization

UNIT-IV

Multiplicative Perturbation

Definition of Multiplicative Perturbation, Transformation Invariant Data Mining Models, Privacy Evaluation for Multiplicative Perturbation, Attack Resilient Multiplicative Perturbation, Metrics for Quantifying Privacy Level, Metrics for Quantifying Hiding Failure, Metrics for Quantifying Data Quality.

UNIT-V

Utility-Based Privacy-Preserving Data

Types of Utility-Based Privacy Preserving Methods, Utility-Based Anonymization Using Local Recording, The Utility-Based Privacy Preserving Methods in Classification Problems, Anonymization Merginal: Injection Utility into Anonymization Data Sets.

Text Book:

1. Privacy - Preserving Data Mining: Models and Algorithms Edited by Charu C. Aggarwal and S. Yu, Springer

Reference Books:

- 1. Charu C. Agarwal, Data Mining: The Textbook, 1st Edition, Springer.
- 2. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd Edition, Elsevier.
- Privacy Preserving Data Mining by Jaideep Vaidya, Yu Michael Zhu and Chirstopher W. Clifton, Springer

22DS752PE: DATABASE SECURITY (Professional Elective - IV)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

- To learn the security of databases
- To learn the design techniques of database security
- To learn the security software design

Course Outcomes:

- Identify database security problems
- Implement different security models
- · Provide security for software design
- · Protect object-oriented systems
- · Handle security issues for active databases

UNIT - I

Introduction: Introduction to Databases Security, Problems in Databases Security, Controls, Conclusions

Security Models -1: Introduction Access Matrix Model, Take-Grant Model, Acten Model, PN Model.

UNIT-II

Security Models -2: Hartson and Hsiao's Model, Fernandez's Model, Bussolati and Martella's Model for Distributed databases, Bell and LaPadula's Model, Biba's Model, Dion's Model, Sea View Model, Jajodia and Sandhu's Model, The Lattice Model for the Flow Control.

UNIT - III

Security Mechanisms: Introduction User Identification/Authentication, Memory Protection, Resource Protection, Control Flow Mechanisms, Isolation Security Functionalities in Some Operating Systems Trusted Computer System Evaluation Criteria

Security Software Design: Introduction A Methodological Approach to Security Software Design Secure Operating System Design Secure DBMS Design Security Packages Database Security Design

UNIT-IV

Statistical Database Protection & Intrusion Detection Systems: Introduction Statistics Concepts and Definitions Types of Attacks Inference Controls Evaluation Criteria for Control Comparison. Introduction IDES System RETISS System ASES System Discovery

UNIT - V

Models For the Protection of New Generation Database Systems: Introduction A Model for the Protection of Frame Based Systems A Model for the Protection of Object-Oriented Systems SORION Model for the Protection of Object-Oriented Databases, The Orion Model, Jajodia and Kogan's Model-A Model for the Protection of Active Databases Conclusions

TEXT BOOKS:

1. Database Security by Castano Pearson Edition (1/e)

- 1. Database security by alfred basta, melissa zgola, CENGAGE learning.
- Database Security and Auditing: Protecting Data Integrity and Accessibility, 1st Edition, Hassan Afyouni, THOMSON Edition.

22DS753PE: DATA SCIENCE APPLICATIONS (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objective:

 To give deep knowledge of data science and how it can be applied in various fields to make life easy.

Course Outcomes:

- Correlate data science and solutions to modern problems.
- Decide when to use which type of technique in data science.

UNIT - I

Data Science Applications in various domains, Challenges and opportunities, tools for data scientists Recommender systems - Introduction, methods, application, challenges.

UNIT - II

Time series data - stock market index movement forecasting. Supply Chain Management - Real world case study in logistics

UNIT - III

Data Science in Education, social media

UNIT-IV

Data Science in Healthcare, Bioinformatics

UNIT-V

Case studies in data optimization using Python.

TEXT BOOKS:

- 1. Aakanksha Sharaff, G.K. Sinha, "Data Science and its applications", CRC Press, 2021.
- 2. Q.A. Menon, S.A. Khoja, "Data Science: Theory, Analysis and Applications", CRC Press, 2020

22DS754PE: MINING MASSIVE DATASETS (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites:

 Students should be familiar with Data mining, algorithms, basic probability theory and Discrete math.

Course Objectives:

- This course will cover practical algorithms for solving key problems in mining of massive datasets.
- 2. This course focuses on parallel algorithmic techniques that are used for large datasets.
- This course will cover stream processing algorithms for data streams that arrive constantly, page ranking algorithms for web search, and online advertisement systems that are studied in detail.

Course Outcomes:

- Handle massive data using MapReduce.
- Develop and implement algorithms for massive data sets and methodologies in the context of data mining.
- 3. Understand the algorithms for extracting models and information from large datasets
- Develop recommendation systems.
- 5. Gain experience in matching various algorithms for particular classes of problems.

UNIT - I

Data Mining-Introduction-Definition of Data Mining-Statistical Limits on Data Mining,

MapReduce and the New Software Stack-Distributed File Systems, MapReduce, Algorithms Using MapReduce.

UNIT-II

Similarity Search: Finding Similar Items-Applications of Near-Neighbor Search, Shingling of Documents, Similarity-Preserving Summaries of Sets, Distance Measures.

Streaming Data: Mining Data Streams-The Stream Data Model, Sampling Data in a Stream, Filtering Streams

UNIT-III

Link Analysis-PageRank, Efficient Computation of PageRank, Link Spam

Frequent Itemsets-Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.

Clustering-The CURE Algorithm, Clustering in Non-Euclidean Spaces, Clustering for Streams and Parallelism

UNIT-IV

Advertising on the Web-Issues in On-Line Advertising, On-Line Algorithms, The Matching Problem, The Adwords Problem, Adwords Implementation.

Recommendation Systems-A Model for Recommendation Systems, Content-Based Recommendations, Collaborative Filtering, Dimensionality Reduction, The NetFlix Challenge.

UNIT - V:

Mining Social-Network Graphs-Social Networks as Graphs, Clustering of Social-Network Graphs, Partitioning of Graphs, Simrank, Counting Triangles

TEXT BOOKS:

1. Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, 3rd Edition.

Reference Books:

- 1. Jiawei Han & Micheline Kamber, Data Mining Concepts and Techniques 3rd Edition Elsevier.
- 2. Margaret H Dunham, Data Mining Introductory and Advanced topics, PEA.
- 3. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann.

22DS755PE: EXPLORATORY DATA ANALYSIS (Professional Elective - V)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Course Objectives:

 Analysis of data, exploring various models in exploratory data analysis, question answering and predictive analysis

Course Outcomes:

- Apply the Epicycle of Analysis process effectively.
- Articulate and refine data-related questions using the Epicycle approach.
- Conduct Exploratory Data Analysis (EDA).
- Develop the skills necessary to use formal modeling techniques for data inference.

UNIT - I

Epicycles of Analysis: Setting the Scene, Epicycle of Analysis, Setting Expectations, Collecting Information, Comparing Expectations to Data, Applying the Epicycle of Analysis process.

UNIT - II

Stating and Refining the Question: Types of Questions, Applying the Epicycle to stating and Refining Your Question, Characteristics of good Question, Translating a Question into a Data Problem, Case Study.

UNIT-III

Exploratory Data Analysis: Formulate your question, read in your data, Checking Packaging, look at the top and bottom of the data, always be checking, validate with at least one External Source, make a plot, Try the Easy Solution First.

UNIT - IV

Using Models to Explore your data: Models as Expectations, Reacting to Data Refining Our Expectations, Examining Linear Relationships, Stopping Criteria.

Inference: Identify the population, Describe the sampling process, Describe the Model for the population, Factors Affecting the Quality of Inference, Case Study.

UNIT - V

Formal Modeling: Goals of Formal Modeling, General Frame work, Associational Analysis, Prediction Analysis, and Summary

TEXT BOOK:

1. "The Art of Data Science: A Guide for Anyone Who Works with Data" by Roger D. Peng and Elizabeth Matsui.

- 1. "Exploratory Data Analytics "by John Tukey.
- 2. "Python for Data Analysis "by Wes McKinney

22DS7210E: DATA MINING (Open Elective - II)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Pre-Requisites:

- 1. Database Management System
- 2. Probability and Statistics

Course Objectives:

 Students will become acquainted with both the strengths and limitations of various data mining techniques like Association, Classification, Cluster and Outlier analysis.

Course Outcomes:

- Understand the need of data mining and pre-processing techniques.
- · Perform market basket analysis using association rule mining.
- Utilize classification techniques for analysis and interpretation of data.
- Identify appropriate clustering and outlier detection techniques to handle complex data.
- Understand the mining of data from web, text and time series data.

UNIT - I

Introduction to Data Mining:

What Data mining? Kinds of Data, Knowledge Discovery process, Data Mining Functionalities, Kinds of Patterns, Major Issues in Data Mining. Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity, Data Pre-processing: Major Tasks in Data Pre-processing, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization.

UNIT - II

Association Analysis: Basic Concepts, Market Basket Analysis, Apriori Algorithm, FP-growth, From Association Analysis to Correlation Analysis, Pattern Mining in Multilevel Associations and Multidimensional Associations.

UNIT - III

Classification: Basic Concepts, Decision Tree Induction, Bayes Classification Methods, Rule-Based Classification, Metrics for Evaluating Classifier Performance, Ensemble Methods, Multilayer Feed-Forward Neural Network, Support Vector Machines, k-Nearest-Neighbor Classifiers.

UNIT-IV

Cluster Analysis: Requirements for Cluster Analysis, Overview of Basic Clustering Methods, Partitioning Methods-k-Means, k-Medoids, Hierarchical Methods-AGENES, DIANA, BIRCH, Density-Based Method-DBSCAN, Outlier Analysis: Types of Outliers, Challenges of Outlier Detection, and Overview of Outlier Detection Methods

UNIT - V

Advanced Concepts: Web Mining- Web Content Mining, Web Structure Mining, Web Usage Mining, Spatial Mining- Spatial Data Overview, Spatial Data Mining Primitives, Spatial Rules, Spatial Classification Algorithm, Spatial Clustering Algorithms, Temporal Mining- Modeling Temporal Events, Time Series, Pattern Detection, Sequences, Temporal Association Rules.

TEXT BOOKS:

- Jiawei Han, Micheline Kamber, Jian Pei., Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann/Elsevier, 2012.
- Margaret H Dunham, Data Mining Introductory and Advanced Topics, 2nd Edition, Pearson Education, India, 2006.

- 1. Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press.
- 2. Pang-Ning Tan, Michael Steinbach, Anuj Karpatne and Vipin Kumar, Introduction to Data Mining, 2nd Edition, Pearson Education India, 2021.
- 3. Amitesh Sinha, Data Warehousing, Thomson Learning, India, 2007.

22DS722OE: DATA ANALYTICS (Open Elective - II)

B.Tech. IV Year I Sem.

L T P C 3 0 0 3

Prerequisites

- 1. A course on "Database Management Systems".
- 2. Knowledge of probability and statistics.

Course Objectives:

- · To explore the fundamental concepts of data analytics.
- · To learn the principles and methods of statistical analysis
- Discover interesting patterns, analyze supervised and unsupervised models and estimate the accuracy of the algorithms.
- To understand the various search methods and visualization techniques.

Course Outcomes: After completion of this course students will be able to

- Understand the impact of data analytics for business decisions and strategy
- Carry out data analysis/statistical analysis
- To carry out standard data visualization and formal inference procedures
- Design Data Architecture
- Understand various Data Sources

UNIT - I

Data Management: Design Data Architecture and manage the data for analysis, understand various sources of Data like Sensors/Signals/GPS etc. Data Management, Data Quality(noise, outliers, missing values, duplicate data) and Data Processing & Processing.

UNIT - II

Data Analytics: Introduction to Analytics, Introduction to Tools and Environment, Application of Modeling in Business, Databases & Types of Data and Variables, Data Modeling Techniques, Missing Imputations etc. Need for Business Modeling.

UNIT - III

Regression – Concepts, Blue property assumptions, Least Square Estimation, Variable Rationalization, and Model Building etc.

Logistic Regression: Model Theory, Model fit Statistics, Model Construction, Analytics applications to various Business Domains etc.

UNIT-IV

Object Segmentation: Regression Vs Segmentation - Supervised and Unsupervised Learning, Tree Building - Regression, Classification, Overfitting, Pruning and Complexity, Multiple Decision Trees etc. **Time Series Methods:** Arima, Measures of Forecast Accuracy, STL approach, Extract features from generated model as Height, Average Energy etc and Analyze for prediction

UNIT - V

Data Visualization: Pixel-Oriented Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

TEXT BOOKS:

1. Student's Handbook for Associate Analytics - II, III.

2. Data Mining Concepts and Techniques, Han, Kamber, 3rd Edition, Morgan Kaufmann Publishers.

- 1. Introduction to Data Mining, Tan, Steinbach and Kumar, Addision Wisley, 2006.
- 2. Data Mining Analysis and Concepts, M. Zaki and W. Meira
- 3. Mining of Massive Datasets, Jure Leskovec Stanford Univ. Anand Rajaraman Milliway Labs Jeffrey D Ullman Stanford Univ.

22DS703PC: PREDICTIVE ANALYTICS LAB

B.Tech. IV Year I Sem. L T P C 0 0 2 1

Course Objectives:

To learn the basics and applications of predictive analytics using different techniques

Course Outcomes:

- · Understand the processing steps for predictive analytics
- · Construct and deploy prediction models with integrity
- Explore various techniques (machine learning/data mining, ensemble) for predictive analytics.
- Apply predictive analytics to real world examples.

List of Experiments: Following experiments to be carried out using Python/SPSS/SAS/R/Power BI

- 1. Simple Linear regression
- 2. Multiple Linear regression
- 3. Logistic Regression
- 4. CHAID
- 5. CART
- 6. ARIMA stock market data
- 7. Exponential Smoothing
- 8. Hierarchical clustering
- 9. Ward's method of clustering
- 10. Crowdsource predictive analytics- Netflix data

TEXT BOOKS:

- Eric Siegel, Predictive analytics- the power to predict who will Click, buy, lie, or die, John Wiley & Sons, 2013.
- Dean Abbott, Applied Predictive Analytics Principles and Techniques for the Professional Data Analyst, 2014.

- 1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning-Data Mining, Inference, and Prediction, Second Edition, Springer Verlag, 2009.
- 2. G. James, D. Witten, T. Hastie, R. Tibshirani-An introduction to statistical learning with applications in R, Springer, 2013
- 3. E. Alpaydin, Introduction to Machine Learning, Prentice Hall of India, 2010

22DS704PC: WEB AND SOCIAL MEDIA ANALYTICS LAB

B.Tech. IV Year I Sem. L T P C 0 0 2 1

Course Objectives:

Exposure to various web and social media analytic techniques.

Course Outcomes:

- · Knowledge on decision support systems
- Apply natural language processing concepts on text analytics
- Understand sentiment analysis
- · Knowledge on search engine optimization and web analytics

List of Experiments

- 1. Preprocessing text document using NLTK of Python
 - a. Stopword elimination
 - b. Stemming
 - c. Lemmatization
 - d. POS tagging
 - e. Lexical analysis
- 2. Sentiment analysis on customer review on products
- 3. Web analytics
 - a. Web usage data (web server log data, clickstream analysis)
 - b. Hyperlink data
- 4. Search engine optimization- implement spamdexing
- 5. Use Google analytics tools to implement the following
 - a. Conversion Statistics
 - b. Visitor Profiles
- 6. Use Google analytics tools to implement the Traffic Sources.

Resources:

- 1. Stanford core NLP package
- 2. GOOGLE.COM/Analytics

TEXT BOOK:

1. Ramesh Sharda, Dursun Delen, Efraim Turban, Business Intelligence and Analytics: Systems for Decision Support, Pearson Education

- Rajiv Sabherwal, Irma Becerra-Fernandez, "Business Intelligence-Practice, Technologies and Management", John Wiley 2011.
- 2. Lariss T. Moss, Shaku Atre, "Business Intelligence Roadmap", Addison-Wesley It Service.
- 3. Yuli Vasiliev, "Oracle Business Intelligence: The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012.

22SM801MS: ORGANIZATIONAL BEHAVIOUR

B.Tech. IV Year II Sem. L T P C 3 0 0 3

Course Objectives:

• This course demonstrates individual, group behavior aspects: The dynamics of organizational climate, structure and its impact on Organizations.

Course Outcomes:

 Students understand their personality, perception and attitudes for overall development and further learn the importance of group behavior in the organizations.

UNIT - I Organizational Behaviour

Definition, need and importance of organizational behaviour - Nature and scope - Frame work - Organizational behaviour models.

UNIT - II Individual Behaviour

Personality - types - Factors influencing personality - Theories - Learning - Types of learners - The learning process - Learning theories - Organizational behaviour modification, Misbehaviour - Types - Management Intervention. Emotions - Emotional Labour - Emotional Intelligence - Theories. Attitudes - Characteristics - Components - Formation - Measurement- Values. Perceptions - Importance - Factors influencing perception - Interpersonal perception- Impression Management. Motivation - importance - Types - Effects on work behavior.

UNIT - III Group Behaviour

Organization structure – Formation – Groups in organizations – Influence – Group dynamics – Emergence of informal leaders and working norms - Group decision making techniques - Team building - Interpersonal relations - Communication - Control.

UNIT - IV Leadership and Power

Meaning - Importance - Leadership styles - Theories of leadership - Leaders Vs Managers - Sources of power - Power centers - Power and Politics.

UNIT - V Dynamics of Organizational Behaviour

Organizational culture and climate – Factors affecting organizational climate – Importance. Job satisfaction – Determinants – Measurements – Influence on behavior. Organizational change – Importance - Stability Vs Change - Proactive Vs Reaction change - the change process - Resistance to change - Managing change. Stress - Work Stressors - Prevention and Management of stress - Balancing work and Life. Organizational development - Characteristics - objectives -. Organizational effectiveness

TEXT BOOKS:

- Stephen P. Robins, Organisational Behavior, PHI Learning / Pearson Education, 11th edition, 2008
- 2. Fred Luthans, Organisational Behavior, McGraw Hill, 11th Edition, 2001.

- 1. Schermerhorn, Hunt and Osborn, Organisational behavior, John Wiley, 9th Edition, 2008.
- Udai Pareek, Understanding Organisational Behaviour, 2nd Edition, Oxford Higher Education, 2004.

22DS861PE: DATA STREAM MINING (Professional Elective - VI)

B.Tech. IV Year I Sem. L T P C 3 0 0 3

Prerequisites

A basic knowledge of "Data Mining"

Course Objectives

- The aim of the course is to introduce the fundamentals of Data Stream Mining.
- The course gives an overview of Mining Strategies, methods and algorithms for data stream mining.

Course Outcomes

- Understand how to formulate a knowledge extraction problem from data streams.
- Ability to apply methods / algorithms to new data stream analysis problems.
- Evaluate the results and understand the functioning of the methods studied.
- · Demonstrate decision tree and adaptive Hoeffding Tree concepts

UNIT-I

MOA Stream Mining, Assumptions, Requirements, Mining Strategies, Change Detection Strategies, MOA Experimental Settings, Previous Evaluation Practices, Evaluation Procedures for Data Streams, Testing Framework, Environments, Data Sources, Generation Speed and Data Size, Evolving Stream Experimental Setting.

UNIT-II

Hoeffding Trees, The Hoeffding Bound for Tree Induction, The Basic Algorithm, Memory Management, Numeric Attributes, Batch Setting Approaches, Data Stream Approaches.

UNIT-III

Prediction Strategies, Majority Class, Naïve Bayes Leaves, Adaptive Hybrid, Hoeffding Tree Ensembles, Data Stream Setting, Realistic Ensemble Sizes.

UNIT-IV

Evolving Data Streams, Algorithms for Mining with Change, A Methodology for Adaptive Stream Mining, Optimal Change Detector and Predictor, Adaptive Sliding Windows, Introduction, Maintaining Updated Windows of Varying Length.

UNIT-V

Adaptive Hoeffding Trees, Introduction, Decision Trees on Sliding Windows, Hoeffding Adaptive Trees, Adaptive Ensemble Methods, New methods of Bagging using trees of different size, New method of bagging using ADWIN, Adaptive Hoeffding Option Trees, Method performance.

TEXT BOOK:

1. DATA STREAM MINING: A Practical Approach by Albert Bifet and Richard Kirkby.

- 1. Knowledge discovery from data streams by Gama João. ISBN: 978-1-4398-2611-9
- 2. Machine Learning for Data Streams by Albert Bifet, Ricard Gavalda; MIT Press, 2017

22DS862PE: WEB SECURITY (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- 1. Give an Overview of information security
- 2. Give an overview of Access control of relational databases

Course Outcomes: Students should be able to

- Understand the Web architecture and applications
- 2. Understand client side and service side programming
- 3. Understand how common mistakes can be bypassed and exploit the application
- 4. Identify common application vulnerabilities

UNIT - I

The Web Security, The Web Security Problem, Risk Analysis and Best Practices Cryptography and the Web: Cryptography and Web Security, Working Cryptographic Systems and Protocols, Legal Restrictions on Cryptography, Digital Identification

UNIT-II

The Web's War on Your Privacy, Privacy-Protecting Techniques, Backups and Antitheft, Web Server Security, Physical Security for Servers, Host Security for Servers, Securing Web Applications

UNIT-III

Database Security: Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems

UNIT-IV

Security Re-engineering for Databases: Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities

UNIT-V

Future Trends Privacy in Database Publishing: A Bayesian Perspective, Privacy-enhanced Location Based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment

TEXT BOOKS:

- 1. Web Security, Privacy and Commerce Simson G Arfinkel, Gene Spafford, O'Reilly.
- 2. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia

22DS863PE: VIDEO ANALYTICS (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To know the fundamental concepts of big data and analytics
- To learn various techniques for mining data streams
- To acquire the knowledge of extracting information from surveillance videos.
- To learn Event Modelling for different applications.
- To understand the models used for recognition of objects in videos.

Course Outcomes:

- · Understand the basics of video- signals and systems.
- Estimate motion in a video
- · Detect the objects and track them
- · Recognize activity and analyze behavior
- Evaluate face recognition technologies

UNIT - I

Introduction

Multi-dimensional signals and systems: signals, transforms, systems, sampling theorem. Digital Images and Video: human visual system and color, digital video, 3D video, digital-video applications, image and video quality.

UNIT - II

Motion Estimation

Image formation, motion models, 2D apparent motion estimation, differential methods, matching methods, non-linear optimization methods, transform domain methods, 3D motion and structure estimation.

UNIT - III

Video Analytics

Introduction- Video Basics - Fundamentals for Video Surveillance- Scene Artifacts- Object Detection and Tracking: Adaptive Background Modelling and Subtraction- Pedestrian Detection and Tracking Vehicle Detection and Tracking- Articulated Human Motion Tracking in Low-Dimensional Latent Spaces.

UNIT - IV

Behavioural Analysis & Activity Recognition

Event Modelling- Behavioural Analysis- Human Activity Recognition-Complex Activity Recognition Activity modelling using 3D shape, Video summarization, shape-based activity models- Suspicious Activity Detection.

UNIT-V

Human Face Recognition & Gait Analysis

Introduction: Overview of Recognition algorithms – Human Recognition using Face: Face Recognition from still images, Face Recognition from video, Evaluation of Face Recognition Technologies- Human Recognition using gait: HMM Framework for Gait Recognition, View Invariant Gait Recognition, Role of Shape and Dynamics in Gait Recognition

TEXT BOOKS:

1. A. Murat Tekalp, "Digital Video Processing", second edition, Pearson, 2015

- 2. Rama Chellappa, Amit K. Roy-Chowdhury, Kevin Zhou. S, "Recognition of Humans and their Activities using Video", Morgan & Claypool Publishers, 2005.
- 3. Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and Francis Group), 2009.

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011.
- 2. Yao Wang, Jorn Ostermann and Ya-Qin Zhang, "Video Processing and Communications", Prentice Hall, 2001.
- Thierry Bouwmans, Fatih Porikli, Benjamin Höferlin and Antoine Vacavant, "Background Modeling and Foreground Detection for Video Surveillance: Traditional and Recent Approaches, Implementations, Benchmarking and Evaluation", CRC Press, Taylor and Francis Group, 2014.
- 4. Md. Atiqur Rahman Ahad, "Computer Vision and Action Recognition-A Guide for Image Processing and Computer Vision Community for Action Understanding", Atlantis Press, 2011.

22DS864PE: BLOCKCHAIN TECHNOLOGY (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites

- 1. Knowledge in information security and applied cryptography.
- 2. Knowledge in Computer Networks.

Course Objectives:

- To learn the fundamentals of Blockchain and various types of block chain and consensus mechanisms.
- To understand the public block chain system, Private block chain system and consortium blockchain.
- Able to know the security issues of blockchain technology.

Course Outcomes:

- Understanding concepts behind crypto currency
- · Applications of smart contracts in decentralized application development
- Understand frameworks related to public, private and hybrid blockchain
- Create blockchain for different application case studies

UNIT - I

Fundamentals of Blockchain: Introduction, Origin of Blockchain, Blockchain Solution, Components of Blockchain, Block in a Blockchain, The Technology and the Future.

Blockchain Types and Consensus Mechanism: Introduction, Decentralization and Distribution, Types of Blockchain, Consensus Protocol.

Cryptocurrency – Bitcoin, Altcoin and Token: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage.

UNIT - II

Public Blockchain System: Introduction, Public Blockchain, Popular Public Blockchains, The Bitcoin Blockchain, Ethereum Blockchain.

Smart Contracts: Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry.

UNIT - III

Private Blockchain System: Introduction, Key Characteristics of Private Blockchain, Need of Private Blockchain, Private Blockchain Examples, Private Blockchain and Open Source, E- commerce Site Example, Various Commands (Instructions) in E-commerce Blockchain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Blockchain, Byzantine Fault, Multichain.

Consortium Blockchain: Introduction, Key Characteristics of Consortium Blockchain, Need of Consortium Blockchain, Hyperledger Platform, Overview of Ripple, Overview of Corda. Initial Coin Offering: Introduction, Blockchain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms.

UNIT-IV

Security in Blockchain: Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Blockchain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Blockchain Smart Contract (DApp), Security Aspects in Hyperledger Fabric.

Applications of Blockchain: Introduction, Blockchain in Banking and Finance, Blockchain in Education, Blockchain in Energy, Blockchain in Healthcare, Blockchain in Real-estate, Blockchain In Supply Chain, The Blockchain and IoT. Limitations and Challenges of Blockchain.

UNIT-V

Blockchain Case Studies: Case Study 1 - Retail, Case Study 2 - Banking and Financial Services, Case Study 3 - Healthcare, Case Study 4 - Energy and Utilities.

Blockchain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Blockchain.

Blockchain platform using Hyperledger Fabric: Introduction, Components of Hyper ledger Fabric Network, Chain codes from Developer.ibm.com, Blockchain Application Using Fabric Java SDK.

TEXT BOOK:

1. Blockchain Technology, Chandramouli Subramanian, Asha A. George, Abhilasj K A and Meena Karthikeyan, Universities Press.

- 1. Michael Juntao Yuan, Building Blockchain Apps, Pearson, India.
- 2. Blockchain Blueprint for Economy, Melanie Swan, SPD O'reilly.
- 3. Blockchain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Pearson.

22DS865PE: PARALLEL AND DISTRIBUTED COMPUTING (Professional Elective -VI)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- To learn core ideas behind parallel and distributed computing.
- To explore the methodologies adopted for parallel and distributed environments.
- To understand the networking aspects of parallel and distributed computing.
- To provide an overview of the computational aspects of parallel and distributed computing.
- To learn parallel and distributed computing models.

Course Outcomes:

- Explore the methodologies adopted for parallel and distributed environments.
- Analyze the networking aspects of Distributed and Parallel Computing.
- Explore the different performance issues and tasks in parallel and distributed computing.
- Tools usage for parallel and distributed computing.
- Understand high performance computing techniques.

UNIT - I

Parallel and Distributed Computing—Introduction-Benefits and Needs- Parallel and Distributed Systems- Programming Environment- Theoretical Foundations- Parallel Algorithms—Introduction-Parallel Models and Algorithms- Sorting- Matrix Multiplication

UNIT - II

Architecture of Parallel and Distributed Systems, Parallel Operating Systems.

UNIT - III

Management of Resources in Parallel Systems- Parallel Database Systems and Multimedia Object Servers.

UNIT-IV

Networking Aspects of Distributed and Parallel Computing- Process- Parallel and Distributed Scientific Computing.

UNIT-V

Multimedia Applications for Parallel and Distributed Systems

TEXT BOOK:

 Jacek Błażewicz, et al., "Handbook on parallel and distributed processing", Springer Science & Business Media, 2013.

- 1. George F. Coulouris, Jean Dollimore, and Tim Kindberg, "Distributed systems: concepts and design", Pearson Education, 2005.
- Gregor Kosec and Roman Trobec, "Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods", Springer, 2015.
- 3. Andrew S. Tanenbaum, and Maarten Van Steen, "Distributed Systems: Principles and Paradigms". Prentice-Hall, 2007.

22DS8310E: INTRODUCTION TO SOCIAL MEDIA MINING (Open Elective -III)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Prerequisites

1. Data Analytics.

Course Objectives

- The purpose of this course is to provide the students with knowledge of social media mining principles and techniques.
- This course is also designed to give an exposure of the frontiers of social media mining (Facebook, twitter)
- To introduce new technology for data analytics and introduce community Analysis
- · To introduce various Recommendation algorithms

Course Outcomes

- Understand social media and its data.
- Apply mining technologies on twitter, Facebook, LinkedIn and Google.
- Learn about community
- · Apply various Recommendation Algorithms
- Analyze the Behavior of people

UNIT - I

Introduction

Social Media Mining, New Challenges for Mining

Graph Essentials

Graph Basics, Graph Representation, Types of Graphs, Connectivity in Graphs, Special Graphs, Graph Algorithms

UNIT - II

Network Measures

Centrality, Transitivity and Reciprocity, Balance and Status, Similarity.

Network Models

Properties of Real-World Networks, Random Graphs, Small-World Model, Preferential Attachment Model

UNIT - III

Data Mining Essentials

Data, Data Preprocessing, Data Mining Algorithms, Supervised Learning, Unsupervised Learning Community Analysis

Community Detection, Community Evaluation, Community Evaluation

UNIT-IV

Information Diffusion in Social Media

Herd Behavior, Information Cascades, Diffusion of innovations, Epidemics

Influence and Homophily

Measuring Assortativity, Influence, Homophily, Distinguishing Influence and Homophily

UNIT-V

Recommendation in Social Media

Challenges, Classical Recommendation Algorithms, Recommendation Using Social Context, Evaluating Recommendations

Behavior Analytics

Individual Behavior, Collective Behavior.

TEXT BOOK:

 Social Media Mining (An Introduction), Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Cambridge University Press, Draft Version: April 20, 2014

- 1. Mining the Social Web, 2nd Edition Data Mining Face book, Twitter, LinkedIn, Google+, GitHub, and More By Matthew A. Russell Publisher: O'Reilly Media.
- 2. Social Media Mining with R [Kindle Edition] NATHAN DANNEMAN RICHARD HEIMANN

22DS832OE: DATA VISUALIZATION USING PYTHON (Open Elective -III)

B.Tech. IV Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Learn data wrangling techniques
- · Introduce visual perception and core skills for visual analysis

Course Outcomes:

- · Perform data wrangling
- Explain principles of visual perception
- · Apply core skills for visual analysis
- · Apply visualization techniques for various data analysis tasks
- Evaluate visualization techniques

UNIT - I

An Introduction to Data Visualization in Python, Types of Plots- statistical plots, Images, Networks/ Graphs, Geographical, 3D and Interactive, Grids and Meshes

UNIT-II

Manipulating and visualizing data with Pandas: defining data frames, Creating and manipulating data frames, visualization with pandas

Matplotlib: Features of matplotlib, Anatomy and Customization of matplotlib plot, Plotting and plot customization, Customizing a plot, Visualization examples,

UNIT-III

Seaborn: Features of seaborn, Creating plots with seaborn, Visualization examples

Altair: Altair's declarative API, creating an Altair Chart and Plot, Changing mark/PlotTypes, Global Configuration, Encoding arguments, Altair Datatypes, CreatingTitles, Properties, Tooltips, Saving Altair Charts, Making Plots Interactive, Visualization Examples,

UNIT-IV

Plotly: Plotly and JSON, Online and Offline plotting, Structure of Plotly Plot, Graph Objectives VS Dictionaries, Plotly Express, updating plots- Adding and Updating Traces, Creating Subplots, Drop-Down Menus, Dash Interactivity, Example Plots

UNIT-V

CGPlot2/Plotnine: The Gammar of Graphics, Creating Plots, Changing Geoms, Stats, Faceting, Coordinates, Annotations, Scaling, Themes, Legends, and Palettes, Visualization Examples.

TEXT BOOKS:

- 1. Daniel Nelson, Data Visualization in Python
- 2. Ward, Grinstein Keim, Interactive Data Visualization: Foundations, Techniques, and Applications. Natick A K Peters, Ltd.

- 1. Jacqueline Kazil and Katharine Jarmul, Data Wrangling with Python: Tips and Tools to Make Your Life Easier, O'Reilly.
- 2. E. Tufte, The Visual Display of Quantitative Information, Graphics Press.